Suppr超能文献

平滑且形状受限的分位数分布滞后模型。

Smooth and shape-constrained quantile distributed lag models.

作者信息

Jin Yisen, Molstad Aaron J, Wilson Ander, Antonelli Joseph

机构信息

Department of Statistics, University of Florida, Gainesville, FL 32611, United States.

School of Statistics, University of Minnesota, Minneapolis, MN 55455, United States.

出版信息

Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf101.

Abstract

Exposure to environmental pollutants during the gestational period can significantly impact infant health outcomes, such as birth weight and neurological development. Identifying critical windows of susceptibility, which are specific periods during pregnancy when exposure has the most profound effects, is essential for developing targeted interventions. Distributed lag models (DLMs) are widely used in environmental epidemiology to analyze the temporal patterns of exposure and their impact on health outcomes. However, traditional DLMs focus on modeling the conditional mean, which may fail to capture heterogeneity in the relationship between predictors and the outcome. Moreover, when modeling the distribution of health outcomes like gestational birth weight, it is the extreme quantiles that are of most clinical relevance. We introduce 2 new quantile distributed lag model (QDLM) estimators designed to address the limitations of existing methods by leveraging smoothness and shape constraints, such as unimodality and concavity, to enhance interpretability and efficiency. We apply our QDLM estimators to the Colorado birth cohort data, demonstrating their effectiveness in identifying critical windows of susceptibility and informing public health interventions.

摘要

孕期接触环境污染物会对婴儿健康结局产生重大影响,如出生体重和神经发育。确定易感性关键窗口(即孕期中接触污染物影响最为深远的特定时期)对于制定针对性干预措施至关重要。分布滞后模型(DLMs)在环境流行病学中广泛用于分析接触的时间模式及其对健康结局的影响。然而,传统的DLMs专注于对条件均值进行建模,这可能无法捕捉预测变量与结局之间关系的异质性。此外,在对诸如孕周出生体重等健康结局的分布进行建模时,最具临床相关性的是极端分位数。我们引入了两种新的分位数分布滞后模型(QDLM)估计器,旨在通过利用平滑性和形状约束(如单峰性和凹性)来解决现有方法的局限性,以提高可解释性和效率。我们将QDLM估计器应用于科罗拉多州出生队列数据,证明了它们在识别易感性关键窗口和为公共卫生干预提供信息方面的有效性。

相似文献

1
Smooth and shape-constrained quantile distributed lag models.
Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf101.
3
Metformin for women who are overweight or obese during pregnancy for improving maternal and infant outcomes.
Cochrane Database Syst Rev. 2018 Jul 24;7(7):CD010564. doi: 10.1002/14651858.CD010564.pub2.
4
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
5
Plug-and-play use of tree-based methods: consequences for clinical prediction modeling.
J Clin Epidemiol. 2025 Aug;184:111834. doi: 10.1016/j.jclinepi.2025.111834. Epub 2025 May 19.
6
Glycaemic control in labour with diabetes: GILD, a scoping study.
Health Technol Assess. 2025 Aug;29(41):1-150. doi: 10.3310/KHGD2761.
7
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
8
Antiretroviral therapy (ART) for treating HIV infection in ART-eligible pregnant women.
Cochrane Database Syst Rev. 2010 Mar 17(3):CD008440. doi: 10.1002/14651858.CD008440.
9
Distributed lag interaction model with index modification.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf017.
10
Telephone support for women during pregnancy and the first six weeks postpartum.
Cochrane Database Syst Rev. 2013 Jul 18;2013(7):CD009338. doi: 10.1002/14651858.CD009338.pub2.

本文引用的文献

1
CRITICAL WINDOW VARIABLE SELECTION FOR MIXTURES: ESTIMATING THE IMPACT OF MULTIPLE AIR POLLUTANTS ON STILLBIRTH.
Ann Appl Stat. 2022 Sep;16(3):1633-1652. doi: 10.1214/21-aoas1560. Epub 2022 Jul 19.
3
Multiple exposure distributed lag models with variable selection.
Biostatistics. 2023 Dec 15;25(1):1-19. doi: 10.1093/biostatistics/kxac038.
4
Semiparametric distributed lag quantile regression for modeling time-dependent exposure mixtures.
Biometrics. 2023 Sep;79(3):2619-2632. doi: 10.1111/biom.13702. Epub 2022 Jun 10.
7
Distributed Lag Interaction Models with Two Pollutants.
J R Stat Soc Ser C Appl Stat. 2019 Jan;68(1):79-97. doi: 10.1111/rssc.12297. Epub 2018 Jul 8.
8
Potential for Bias When Estimating Critical Windows for Air Pollution in Children's Health.
Am J Epidemiol. 2017 Dec 1;186(11):1281-1289. doi: 10.1093/aje/kwx184.
9
Robust distributed lag models using data adaptive shrinkage.
Biostatistics. 2018 Oct 1;19(4):461-478. doi: 10.1093/biostatistics/kxx041.
10
A penalized framework for distributed lag non-linear models.
Biometrics. 2017 Sep;73(3):938-948. doi: 10.1111/biom.12645. Epub 2017 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验