Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA.
Adv Mater. 2023 Jan;35(3):e2206385. doi: 10.1002/adma.202206385. Epub 2022 Dec 19.
3D-bioprinted skin-mimicking phantoms with skin colors ranging across the Fitzpatrick scale are reported. These tools can help understand the impact of skin phototypes on biomedical optics. Synthetic melanin nanoparticles of different sizes (70-500 nm) and clusters are fabricated to mimic the optical behavior of melanosome. The absorption coefficient and reduced scattering coefficient of the phantoms are comparable to real human skin. Further the melanin content and distribution in the phantoms versus real human skins are validated via photoacoustic (PA) imaging. The PA signal of the phantom can be improved by: 1) increasing melanin size (3-450-fold), 2) increasing clustering (2-10.5-fold), and 3) increasing concentration (1.3-8-fold). Then, multiple biomedical optics tools (e.g., PA, fluorescence imaging, and photothermal therapy) are used to understand the impact of skin tone on these modalities. These well-defined 3D-bioprinted phantoms may have value in translating biomedical optics and reducing racial bias.
报道了具有跨越 Fitzpatrick 肤色范围的皮肤颜色的 3D 生物打印皮肤模拟体。这些工具可以帮助理解皮肤光型对生物医学光学的影响。制造了不同尺寸(70-500nm)和团簇的合成黑色素纳米颗粒来模拟黑色素体的光学行为。模拟体的吸收系数和散射系数与真实人体皮肤相当。进一步通过光声(PA)成像验证了模拟体中的黑色素含量和分布与真实人体皮肤的一致性。通过以下方式可以提高模拟体的 PA 信号:1)增加黑色素尺寸(3-450 倍),2)增加聚集度(2-10.5 倍),3)增加浓度(1.3-8 倍)。然后,使用多种生物医学光学工具(例如,PA、荧光成像和光热疗法)来了解肤色对这些模式的影响。这些定义明确的 3D 生物打印模拟体可能有助于转化生物医学光学并减少种族偏见。