Suppr超能文献

金发姑娘能量最小原理:基于肽的可逆聚集和生物传感。

Goldilocks Energy Minimum: Peptide-Based Reversible Aggregation and Biosensing.

机构信息

Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States.

Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Sep 13;15(36):42293-42303. doi: 10.1021/acsami.3c09627. Epub 2023 Aug 31.

Abstract

Colorimetric biosensors based on gold nanoparticle (AuNP) aggregation are often challenged by matrix interference in biofluids, poor specificity, and limited utility with clinical samples. Here, we propose a peptide-driven nanoscale disassembly approach, where AuNP aggregates induced by electrostatic attractions are dissociated in response to proteolytic cleavage. Initially, citrate-coated AuNPs were assembled via a short cationic peptide (RRK) and characterized by experiments and simulations. The dissociation peptides were then used to reversibly dissociate the AuNP aggregates as a function of target protease detection, i.e., main protease (M), a biomarker for severe acute respiratory syndrome coronavirus 2. The dissociation propensity depends on peptide length, hydrophilicity, charge, and ligand architecture. Finally, our dissociation strategy provides a rapid and distinct optical signal through M cleavage with a detection limit of 12.3 nM in saliva. Our dissociation peptide effectively dissociates plasmonic assemblies in diverse matrices including 100% human saliva, urine, plasma, and seawater, as well as other types of plasmonic nanoparticles such as silver. Our peptide-enabled dissociation platform provides a simple, matrix-insensitive, and versatile method for protease sensing.

摘要

基于金纳米粒子(AuNP)聚集的比色生物传感器通常受到生物流体中基质干扰、特异性差以及与临床样本的应用有限等问题的挑战。在这里,我们提出了一种肽驱动的纳米尺度解组装方法,其中静电吸引诱导的 AuNP 聚集体在响应蛋白水解切割时解离。最初,通过短的阳离子肽(RRK)组装了柠檬酸涂层的 AuNP,并通过实验和模拟进行了表征。然后,将解离肽用于可逆地解离 AuNP 聚集体,以作为目标蛋白酶检测的功能,即主要蛋白酶(M),它是严重急性呼吸系统综合征冠状病毒 2 的生物标志物。解离倾向取决于肽的长度、亲水性、电荷和配体结构。最后,我们的解离策略通过 M 切割提供了快速而独特的光学信号,在唾液中的检测限为 12.3 nM。我们的解离肽可有效解离包括 100%人唾液、尿液、血浆和海水在内的多种基质中的等离子体组装,以及其他类型的等离子体纳米粒子,如银。我们的肽激活解离平台为蛋白酶传感提供了一种简单、抗基质干扰和通用的方法。

相似文献

1
Goldilocks Energy Minimum: Peptide-Based Reversible Aggregation and Biosensing.金发姑娘能量最小原理:基于肽的可逆聚集和生物传感。
ACS Appl Mater Interfaces. 2023 Sep 13;15(36):42293-42303. doi: 10.1021/acsami.3c09627. Epub 2023 Aug 31.
9
Peptide Amphiphile Mediated Co-assembly for Nanoplasmonic Sensing.肽两亲体介导的共组装用于纳米等离子体传感。
Angew Chem Int Ed Engl. 2023 Jan 23;62(4):e202214394. doi: 10.1002/anie.202214394. Epub 2022 Dec 15.

本文引用的文献

2
Peptide valence-induced breaks in plasmonic coupling.肽价态诱导的等离子体耦合断裂。
Chem Sci. 2023 Feb 7;14(10):2659-2668. doi: 10.1039/d2sc05837e. eCollection 2023 Mar 8.
3
Peptide Amphiphile Mediated Co-assembly for Nanoplasmonic Sensing.肽两亲体介导的共组装用于纳米等离子体传感。
Angew Chem Int Ed Engl. 2023 Jan 23;62(4):e202214394. doi: 10.1002/anie.202214394. Epub 2022 Dec 15.
9
Kinetics and Mechanism of Fentanyl Dissociation from the μ-Opioid Receptor.芬太尼从μ-阿片受体解离的动力学与机制
JACS Au. 2021 Nov 5;1(12):2208-2215. doi: 10.1021/jacsau.1c00341. eCollection 2021 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验