Suppr超能文献

观察到许多研究人员使用相同的数据和假设,揭示了一个隐藏的不确定宇宙。

Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty.

机构信息

Research Center on Inequality and Social Policy (SOCIUM), University of Bremen, Bremen, 28359, Germany.

School of Politics and International Studies, University of Leeds, Leeds, LS2 9JT, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2203150119. doi: 10.1073/pnas.2203150119. Epub 2022 Oct 28.

Abstract

This study explores how researchers' analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers' expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each team's workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers' results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.

摘要

这项研究探讨了研究人员的分析选择如何影响科学发现的可靠性。大多数关于科学中可靠性问题的讨论都集中在系统偏差上。我们拓宽了视角,强调了研究人员在数据分析过程中做出的有意识和无意识决策的特殊性。我们协调了 73 个研究团队中的 161 名研究人员,并观察了他们的研究决策,他们使用相同的数据独立测试了同一个著名的社会科学假设:移民增加会降低公众对社会政策的支持。在这个典型的社会科学研究案例中,尽管研究团队的起始条件相同,但报告的数值结果和实质性结论却存在广泛差异。研究人员的专业知识、先验信念和预期几乎无法预测研究结果的广泛变化。即使对每个团队工作流程中的所有可识别决策进行定性编码,也只能解释 95%以上的数值结果总方差。这揭示了一个不确定性的宇宙,当单独考虑一项研究时,这个宇宙是隐藏的。研究人员的结果和结论变化的特殊性是许多科学假设仍然存在争议的一个以前被低估的解释。这些结果呼吁在报告科学发现时更加具有认识上的谦逊和清晰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8909/9636921/09530c96c5e3/pnas.2203150119fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验