Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239.
Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239.
Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2209565119. doi: 10.1073/pnas.2209565119. Epub 2022 Oct 28.
Efferent neurons are believed to play essential roles in maintaining auditory function. The lateral olivocochlear (LOC) neurons-which project from the brainstem to the inner ear, where they release multiple transmitters including peptides, catecholamines, and acetylcholine-are the most numerous yet least understood elements of efferent control of the cochlea. Using in vitro calcium imaging and patch-clamp recordings, we found that LOC neurons in juvenile and young adult mice exhibited extremely slow waves of activity (∼0.1 Hz). These seconds-long bursts of Na spikes were driven by an intrinsic oscillator dependent on L-type Ca channels and were not observed in prehearing mice, suggesting an age-dependent mechanism underlying the intrinsic oscillator. Using optogenetic approaches, we identified both ascending (T-stellate cells of the cochlear nucleus) and descending (auditory cortex) sources of synaptic excitation, as well as the synaptic receptors used for such excitation. Additionally, we identified potent inhibition originating in the glycinergic medial nucleus of trapezoid body (MNTB). Conductance-clamp experiments revealed an unusual mechanism of electrical signaling in LOC neurons, in which synaptic excitation and inhibition served to switch on and off the intrinsically generated spike burst mechanism, allowing for prolonged periods of activity or silence controlled by brief synaptic events. Protracted bursts of action potentials may be essential for effective exocytosis of the diverse transmitters released by LOC fibers in the cochlea.
传出神经元被认为在维持听觉功能方面发挥着重要作用。外侧橄榄耳蜗(LOC)神经元——从脑干投射到内耳,在内耳释放包括肽、儿茶酚胺和乙酰胆碱在内的多种递质——是传出控制耳蜗的最丰富但了解最少的元素。通过在体钙成像和膜片钳记录,我们发现幼年和年轻成年小鼠的 LOC 神经元表现出极其缓慢的活动波(约 0.1 Hz)。这些持续数秒的 Na 峰爆发是由依赖于 L 型钙通道的内在振荡器驱动的,在未听声的小鼠中未观察到,这表明内在振荡器存在年龄依赖性机制。使用光遗传学方法,我们确定了突触兴奋的上升(耳蜗核 T 星形细胞)和下降(听觉皮层)来源,以及用于这种兴奋的突触受体。此外,我们还确定了起源于梯形体的甘氨酸能内侧核(MNTB)的强大抑制作用。电导率钳实验揭示了 LOC 神经元中一种不寻常的电信号机制,其中突触兴奋和抑制作用用于开启和关闭内在产生的尖峰爆发机制,允许短暂的突触事件控制延长的活动或沉默期。动作电位的延长爆发可能对于 LOC 纤维在耳蜗中释放的各种递质的有效胞吐作用至关重要。