Suppr超能文献

基于病例的初步评估:骨转移 Ensemble 树列用于生存决策支持平台(BMETS-DSP)的临床实用性评估。

Evaluation of the Clinical Utility of the Bone Metastases Ensemble Trees for Survival Decision Support Platform (BMETS-DSP): A Case-Based Pilot Assessment.

机构信息

Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN.

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD.

出版信息

JCO Clin Cancer Inform. 2022 Oct;6:e2200082. doi: 10.1200/CCI.22.00082.

Abstract

PURPOSE

The Bone Metastases Ensemble Trees for Survival Decision Support Platform (BMETS-DSP) provides patient-specific survival predictions and evidence-based recommendations to guide multidisciplinary management for symptomatic bone metastases. We assessed the clinical utility of the BMETS-DSP through a pilot prepost design in a simulated clinical environment.

METHODS

Ten Radiation Oncology physicians reviewed 55 patient cases at two time points: without and then with the use of BMETS-DSP. Assessment included 12-month survival estimate, confidence in and likelihood of sharing estimates with patients, and recommendations for open surgery, systemic therapy, hospice referral, and radiotherapy (RT) regimen. Paired statistics compared pre- versus post-DSP outcomes. Reported statistical significance is < .05.

RESULTS

Pre- versus post-DSP, overestimation of true minus estimated survival time was significantly reduced (mean difference -2.1 [standard deviation 4.1] -1 month [standard deviation 3.5]). Prediction accuracy was significantly improved at cut points of < 3 (72 79%), ≤ 6 (64 71%), and ≥ 12 months (70 81%). Median ratings of confidence in and likelihood of sharing prognosis significantly increased. Significantly greater concordance was seen in matching use of 1-fraction RT with the true survival < 3 months (70 76%) and < 10-fraction RT with the true survival < 12 months (55 62%) and appropriate use of open surgery (47% 53%), without significant changes in selection of hospice referral or systemic therapy.

CONCLUSION

This pilot study demonstrates that BMETS-DSP significantly improved physician survival estimation accuracy, prognostic confidence, likelihood of sharing prognosis, and use of prognosis-appropriate RT regimens in the care of symptomatic bone metastases, supporting future multi-institutional validation of the platform.

摘要

目的

骨转移 Ensemble 树生存决策支持平台(BMETS-DSP)提供患者特异性生存预测和循证推荐,以指导多学科管理有症状的骨转移。我们通过模拟临床环境中的试点前后设计评估了 BMETS-DSP 的临床实用性。

方法

10 名放射肿瘤学医生在两个时间点对 55 例患者病例进行了评估:使用 BMETS-DSP 之前和之后。评估包括 12 个月的生存估计、对估计值的信心和与患者分享的可能性,以及对开放性手术、系统治疗、临终关怀转诊和放疗(RT)方案的推荐。配对统计比较了 DSP 前后的结果。报告的统计显著性为 <.05。

结果

与 DSP 前后相比,真实生存时间减去估计生存时间的高估显著减少(平均差异 -2.1[标准偏差 4.1],-1 个月[标准偏差 3.5])。在 < 3(72 79%)、≤ 6(64 71%)和≥ 12 个月(70 81%)的切点处,预测准确性显著提高。对预后的信心和分享预后的可能性的中位数评分显著增加。在将 1 次分割 RT 与真实生存时间 < 3 个月(70 76%)和 10 次分割 RT 与真实生存时间 < 12 个月(55 62%)相匹配以及正确使用开放性手术(47% 53%)方面,一致性显著提高,而临终关怀转诊或系统治疗的选择没有显著变化。

结论

这项试点研究表明,BMETS-DSP 显著提高了医生的生存估计准确性、预后信心、分享预后的可能性以及在治疗有症状的骨转移时使用与预后相匹配的 RT 方案的可能性,支持该平台的未来多机构验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b2d/9848564/cc0ed20bb416/cci-6-e2200082-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验