Suppr超能文献

生存的骨转移集成树(BMETS)机器学习模型对有症状骨转移患者生存预测的外部验证。

External Validation of the Bone Metastases Ensemble Trees for Survival (BMETS) Machine Learning Model to Predict Survival in Patients With Symptomatic Bone Metastases.

机构信息

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.

出版信息

JCO Clin Cancer Inform. 2021 Mar;5:304-314. doi: 10.1200/CCI.20.00128.

Abstract

PURPOSE

The Bone Metastases Ensemble Trees for Survival (BMETS) model uses a machine learning algorithm to estimate survival time following consultation for palliative radiation therapy for symptomatic bone metastases (SBM). BMETS was developed at a tertiary-care, academic medical center, but its validity and stability when applied to external data sets are unknown.

PATIENTS AND METHODS

Patients treated with palliative radiation therapy for SBM from May 2013 to May 2016 at two hospital-based community radiation oncology clinics were included, and medical records were retrospectively reviewed to collect model covariates and survival time. The Kaplan-Meier method was used to estimate overall survival from consultation to death or last follow-up. Model discrimination was estimated using time-dependent area under the curve (tAUC), which was calculated using survival predictions from BMETS based on the initial training data set.

RESULTS

A total of 216 sites of SBM were treated in 182 patients. Most common histologies were breast (27%), lung (23%), and prostate (23%). Compared with the BMETS training set, the external validation population was older (mean age, 67 62 years; < .001), had more primary breast (27% 19%; = .03) and prostate cancer (20% 12%; = .01), and survived longer (median, 10.7 6.4 months). When the BMETS model was applied to the external data set, tAUC values at 3, 6, and 12 months were 0.82, 0.77, and 0.77, respectively. When refit with data from the combined training and external validation sets, tAUC remained 0.79.

CONCLUSION

BMETS maintained high discriminative ability when applied to an external validation set and when refit with new data, supporting its generalizability, stability, and the feasibility of dynamic modeling.

摘要

目的

骨骼转移生存Ensemble 树(BMETS)模型使用机器学习算法来估计因症状性骨转移(SBM)而行姑息性放疗咨询后的生存时间。BMETS 是在一家三级保健、学术医疗中心开发的,但在应用于外部数据集时,其有效性和稳定性尚不清楚。

患者和方法

纳入 2013 年 5 月至 2016 年 5 月在两家医院社区放疗科因 SBM 而行姑息性放疗的患者,回顾性收集病历以收集模型协变量和生存时间。采用 Kaplan-Meier 法估计从咨询到死亡或最后随访的总生存时间。通过基于初始训练数据集的 BMETS 生存预测计算时间依赖性曲线下面积(tAUC)来评估模型的判别能力。

结果

共对 182 例患者的 216 个 SBM 部位进行了治疗。最常见的组织学类型为乳腺癌(27%)、肺癌(23%)和前列腺癌(23%)。与 BMETS 训练集相比,外部验证人群年龄更大(平均年龄,67 岁 ± 62 岁;<.001),原发乳腺癌(27% 比 19%;=.03)和前列腺癌(20% 比 12%;=.01)更多,生存时间更长(中位数,10.7 个月 ± 6.4 个月)。当将 BMETS 模型应用于外部数据集时,3、6 和 12 个月的 tAUC 值分别为 0.82、0.77 和 0.77。当使用训练和外部验证数据集的综合数据重新拟合时,tAUC 仍为 0.79。

结论

BMETS 在应用于外部验证集和使用新数据重新拟合时保持了较高的判别能力,支持其通用性、稳定性和动态建模的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验