Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD.
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.
Int J Radiat Oncol Biol Phys. 2020 Nov 1;108(3):554-563. doi: 10.1016/j.ijrobp.2020.05.023. Epub 2020 May 22.
To determine whether a machine learning approach optimizes survival estimation for patients with symptomatic bone metastases (SBM), we developed the Bone Metastases Ensemble Trees for Survival (BMETS) to predict survival using 27 prognostic covariates. To establish its relative clinical utility, we compared BMETS with 2 simpler Cox regression models used in this setting.
For 492 bone sites in 397 patients evaluated for palliative radiation therapy (RT) for SBM from January 2007 to January 2013, data for 27 clinical variables were collected. These covariates and the primary outcome of time from consultation to death were used to build BMETS using random survival forests. We then performed Cox regressions as per 2 validated models: Chow's 3-item (C-3) and Westhoff's 2-item (W-2) tools. Model performance was assessed using cross-validation procedures and measured by time-dependent area under the curve (tAUC) for all 3 models. For temporal validation, a separate data set comprised of 104 bone sites treated in 85 patients in 2018 was used to estimate tAUC from BMETS.
Median survival was 6.4 months. Variable importance was greatest for performance status, blood cell counts, recent systemic therapy type, and receipt of concurrent nonbone palliative RT. tAUC at 3, 6, and 12 months was 0.83, 0.81, and 0.81, respectively, suggesting excellent discrimination of BMETS across postconsultation time points. BMETS outperformed simpler models at each time, with respective tAUC at each time of 0.78, 0.76, and 0.74 for the C-3 model and 0.80, 0.78, and 0.77 for the W-2 model. For the temporal validation set, respective tAUC was similarly high at 0.86, 0.82, and 0.78.
For patients with SBM, BMETS improved survival predictions versus simpler traditional models. Model performance was maintained when applied to a temporal validation set. To facilitate clinical use, we developed a web platform for data entry and display of BMETS-predicted survival probabilities.
为了确定机器学习方法是否能优化有症状骨转移(SBM)患者的生存估计,我们开发了 Bone Metastases Ensemble Trees for Survival(BMETS),以使用 27 个预后协变量来预测生存。为了确定其相对临床效用,我们将 BMETS 与该环境中使用的两种更简单的 Cox 回归模型进行了比较。
对 2007 年 1 月至 2013 年 1 月期间因 SBM 接受姑息性放疗(RT)评估的 397 名患者的 492 个骨部位,收集了 27 个临床变量的数据。使用随机生存森林,根据这些协变量和咨询到死亡的主要结果构建 BMETS。然后,我们根据 2 个经过验证的模型进行 Cox 回归:Chow 的 3 项(C-3)和 Westhoff 的 2 项(W-2)工具。使用交叉验证程序评估模型性能,并使用所有 3 种模型的时间依赖性曲线下面积(tAUC)进行衡量。为了进行时间验证,我们使用 2018 年治疗的 104 个骨部位和 85 名患者的另一个数据集,从 BMETS 中估计 tAUC。
中位生存时间为 6.4 个月。对表现状态、血细胞计数、最近的全身治疗类型和同时接受非骨姑息性 RT 的影响最大。3、6 和 12 个月时的 tAUC 分别为 0.83、0.81 和 0.81,表明 BMETS 在咨询后各个时间点的区分度均很好。在每个时间点,BMETS 均优于更简单的模型,相应的 tAUC 分别为 C-3 模型的 0.78、0.76 和 0.74,W-2 模型的 0.80、0.78 和 0.77。对于时间验证集,相应的 tAUC 也同样很高,分别为 0.86、0.82 和 0.78。
对于有 SBM 的患者,BMETS 改善了比传统简单模型的生存预测。当应用于时间验证集时,模型性能保持不变。为了便于临床使用,我们开发了一个用于数据输入和显示 BMETS 预测生存概率的网络平台。