Suppr超能文献

当前对 DNA 折纸纳米结构的生物相互作用和处理的理解:机器学习的作用及其在药物输送中的意义。

Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery.

机构信息

Amity Institute of Molecular Medicine and Stem Cell Research Amity University UP, Sector-125, Noida 201313, India.

Department of Electrical and Electronic Engineering, Amity University, Greater Noida 201308, India.

出版信息

Biotechnol Adv. 2022 Dec;61:108052. doi: 10.1016/j.biotechadv.2022.108052. Epub 2022 Oct 25.

Abstract

DNA origami has emerged as an exciting avenue that provides a versatile two and three-dimensional DNA-based platform for nanomedicine and drug delivery applications. Their incredible programmability, custom synthesis, efficiency, biocompatibility, and physio-chemical nature make DNA origami ideal for biomedical applications. Several recent studies demonstrated the potential of DNA origami for different technological applications, especially in drug delivery. However, several challenges related to their intracellular stability, elicitation of the immune response, and cellular fate limit the in-vivo application of these nanostructures. In this review, we critically assess the molecular-level interactions of DNA nanostructures with biological systems that will be helpful to engineer and optimize DNA nanostructures for bio applications. We highlight the hurdles that impair the potential applicability of DNA origami nanostructures in the biology and medicine field. We have also expanded the details of key strategies to overcome the limitations and extend the boundaries of DNA origami closer to nanomedicine. Finally, we explore the role Artificial Intelligence and Machine Learning techniques can play to accelerate the process of their clinical applications.

摘要

DNA 折纸术作为一种令人兴奋的途径出现,为纳米医学和药物输送应用提供了一种通用的二维和三维基于 DNA 的平台。其令人难以置信的可编程性、定制合成、效率、生物相容性和物理化学性质使 DNA 折纸术成为生物医学应用的理想选择。最近的几项研究表明了 DNA 折纸术在不同技术应用中的潜力,特别是在药物输送方面。然而,与它们的细胞内稳定性、免疫反应的激发以及细胞命运相关的几个挑战限制了这些纳米结构的体内应用。在这篇综述中,我们批判性地评估了 DNA 纳米结构与生物系统的分子水平相互作用,这将有助于设计和优化用于生物应用的 DNA 纳米结构。我们强调了阻碍 DNA 折纸术纳米结构在生物学和医学领域潜在应用的障碍。我们还扩展了克服限制和将 DNA 折纸术的边界扩展到更接近纳米医学的关键策略的细节。最后,我们探讨了人工智能和机器学习技术可以在加速其临床应用方面发挥的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验