Suppr超能文献

使用多层感知机神经网络预测舌癌免疫染色标本的颈部淋巴结转移。

Prediction of cervical lymph node metastasis from immunostained specimens of tongue cancer using a multilayer perceptron neural network.

机构信息

1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan.

Cybermedia Center, Osaka University, Osaka, Japan.

出版信息

Cancer Med. 2023 Mar;12(5):5312-5322. doi: 10.1002/cam4.5343. Epub 2022 Oct 28.

Abstract

BACKGROUND

Although cervical lymph node metastasis is an important prognostic factor for oral cancer, occult metastases remain undetected even by diagnostic imaging. We developed a learning model to predict lymph node metastasis in resected specimens of tongue cancer by classifying the level of immunohistochemical (IHC) staining for angiogenesis- and lymphangiogenesis-related proteins using a multilayer perceptron neural network (MNN).

METHODS

We obtained a dataset of 76 patients with squamous cell carcinoma of the tongue who had undergone primary tumor resection. All 76 specimens were IHC stained for the six types shown above (VEGF-C, VEGF-D, NRP1, NRP2, CCR7, and SEMA3E) and 456 slides were prepared. We scored the staining levels visually on all slides. We created virtual slides (4560 images) and the accuracy of the MNN model was verified by comparing it with a hue-saturation (HS) histogram, which quantifies the manually determined visual information.

RESULTS

The accuracy of the training model with the MNN was 98.6%, and when the training image was converted to grayscale, the accuracy decreased to 52.9%. This indicates that our MNN adequately evaluates the level of staining rather than the morphological features of the IHC images. Multivariate analysis revealed that CCR7 staining level and T classification were independent factors associated with the presence of cervical lymph node metastasis in both HS histograms and MNN.

CONCLUSION

These results suggest that IHC assessment using MNN may be useful for identifying lymph node metastasis in patients with tongue cancer.

摘要

背景

尽管颈部淋巴结转移是口腔癌的一个重要预后因素,但即使通过诊断影像学也无法检测到隐匿性转移。我们通过使用多层感知机神经网络(MNN)对血管生成和淋巴管生成相关蛋白的免疫组织化学(IHC)染色水平进行分类,开发了一种预测舌癌切除标本中淋巴结转移的学习模型。

方法

我们获得了 76 例患有舌鳞状细胞癌的患者的数据集,这些患者接受了原发肿瘤切除术。所有 76 例标本均进行了上述六种类型的 IHC 染色(VEGF-C、VEGF-D、NRP1、NRP2、CCR7 和 SEMA3E),共制备了 456 张切片。我们在所有切片上进行了肉眼评分。我们创建了虚拟切片(4560 张图像),并通过与量化手动确定的视觉信息的色调-饱和度(HS)直方图比较来验证 MNN 模型的准确性。

结果

MNN 训练模型的准确率为 98.6%,而当将训练图像转换为灰度时,准确率下降至 52.9%。这表明我们的 MNN 充分评估了染色水平,而不是 IHC 图像的形态特征。多变量分析显示,CCR7 染色水平和 T 分类是与 HS 直方图和 MNN 中颈部淋巴结转移存在相关的独立因素。

结论

这些结果表明,使用 MNN 进行 IHC 评估可能有助于识别舌癌患者的淋巴结转移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc6/10028108/039507a036c9/CAM4-12-5312-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验