Suppr超能文献

一种利用机器学习方法对脑磁共振图像中的胶质瘤进行分割的微调方法,以归一化不同设备间的图像差异。

Fine-Tuning Approach for Segmentation of Gliomas in Brain Magnetic Resonance Images with a Machine Learning Method to Normalize Image Differences among Facilities.

作者信息

Takahashi Satoshi, Takahashi Masamichi, Kinoshita Manabu, Miyake Mototaka, Kawaguchi Risa, Shinojima Naoki, Mukasa Akitake, Saito Kuniaki, Nagane Motoo, Otani Ryohei, Higuchi Fumi, Tanaka Shota, Hata Nobuhiro, Tamura Kaoru, Tateishi Kensuke, Nishikawa Ryo, Arita Hideyuki, Nonaka Masahiro, Uda Takehiro, Fukai Junya, Okita Yoshiko, Tsuyuguchi Naohiro, Kanemura Yonehiro, Kobayashi Kazuma, Sese Jun, Ichimura Koichi, Narita Yoshitaka, Hamamoto Ryuji

机构信息

Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.

Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.

出版信息

Cancers (Basel). 2021 Mar 19;13(6):1415. doi: 10.3390/cancers13061415.

Abstract

Machine learning models for automated magnetic resonance image segmentation may be useful in aiding glioma detection. However, the image differences among facilities cause performance degradation and impede detection. This study proposes a method to solve this issue. We used the data from the Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) and the Japanese cohort (JC) datasets. Three models for tumor segmentation are developed. In our methodology, the BraTS and JC models are trained on the BraTS and JC datasets, respectively, whereas the fine-tuning models are developed from the BraTS model and fine-tuned using the JC dataset. Our results show that the Dice coefficient score of the JC model for the test portion of the JC dataset was 0.779 ± 0.137, whereas that of the BraTS model was lower (0.717 ± 0.207). The mean Dice coefficient score of the fine-tuning model was 0.769 ± 0.138. There was a significant difference between the BraTS and JC models ( < 0.0001) and the BraTS and fine-tuning models ( = 0.002); however, no significant difference between the JC and fine-tuning models ( = 0.673). As our fine-tuning method requires fewer than 20 cases, this method is useful even in a facility where the number of glioma cases is small.

摘要

用于自动磁共振图像分割的机器学习模型可能有助于胶质瘤检测。然而,不同设备之间的图像差异会导致性能下降并阻碍检测。本研究提出了一种解决此问题的方法。我们使用了多模态脑肿瘤图像分割基准(BraTS)和日本队列(JC)数据集的数据。开发了三种用于肿瘤分割的模型。在我们的方法中,BraTS模型和JC模型分别在BraTS数据集和JC数据集上进行训练,而微调模型则从BraTS模型开发并使用JC数据集进行微调。我们的结果表明,JC模型在JC数据集测试部分的Dice系数得分为0.779±0.137,而BraTS模型的得分较低(0.717±0.207)。微调模型的平均Dice系数得分为0.769±0.138。BraTS模型与JC模型之间(<0.0001)以及BraTS模型与微调模型之间(=0.002)存在显著差异;然而,JC模型与微调模型之间无显著差异(=0.673)。由于我们的微调方法所需病例少于20例,因此即使在胶质瘤病例数较少的机构中,该方法也很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1739/8003655/f1184f049283/cancers-13-01415-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验