Ravichandran Harikrishnan, Zheng Yikai, Schranghamer Thomas F, Trainor Nicholas, Redwing Joan M, Das Saptarshi
Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA.
Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA.
Adv Mater. 2023 Jan;35(2):e2206168. doi: 10.1002/adma.202206168. Epub 2022 Dec 8.
As the energy and hardware investments necessary for conventional high-precision digital computing continue to explode in the era of artificial intelligence (AI), a change in paradigm that can trade precision for energy and resource efficiency is being sought for many computing applications. Stochastic computing (SC) is an attractive alternative since, unlike digital computers, which require many logic gates and a high transistor volume to perform basic arithmetic operations such as addition, subtraction, multiplication, sorting, etc., SC can implement the same using simple logic gates. While it is possible to accelerate SC using traditional silicon complementary metal-oxide-semiconductor (CMOS) technology, the need for extensive hardware investment to generate stochastic bits (s-bits), the fundamental computing primitive for SC, makes it less attractive. Memristor and spin-based devices offer natural randomness but depend on hybrid designs involving CMOS peripherals for accelerating SC, which increases area and energy burden. Here, the limitations of existing and emerging technologies are overcome, and a standalone SC architecture embedded in memory and based on 2D memtransistors is experimentally demonstrated. The monolithic and non-von-Neumann SC architecture occupies a small hardware footprint and consumes a miniscule amount of energy (<1 nJ) for both s-bit generation and arithmetic operations, highlighting the benefits of SC.
在人工智能时代,传统高精度数字计算所需的能源和硬件投资持续激增,因此许多计算应用正在寻求一种能以精度换取能源和资源效率的范式转变。随机计算(SC)是一种颇具吸引力的替代方案,因为与数字计算机不同,数字计算机执行加法、减法、乘法、排序等基本算术运算需要许多逻辑门和大量晶体管,而SC使用简单逻辑门就能实现同样的功能。虽然使用传统的硅互补金属氧化物半导体(CMOS)技术可以加速SC,但生成随机位(s位)(SC的基本计算原语)需要大量硬件投资,这使得它的吸引力降低。忆阻器和自旋基器件具有天然的随机性,但依赖于涉及CMOS外围设备的混合设计来加速SC,这增加了面积和能源负担。在此,克服了现有和新兴技术的局限性,并通过实验展示了一种基于二维忆阻器晶体管的嵌入式内存独立SC架构。这种单片非冯·诺依曼SC架构占用的硬件空间小,生成s位和进行算术运算所消耗的能量极小(<1纳焦),凸显了SC的优势。