Suppr超能文献

一种利用二维材料中的点缺陷的随机编码器。

A stochastic encoder using point defects in two-dimensional materials.

作者信息

Ravichandran Harikrishnan, Knobloch Theresia, Subbulakshmi Radhakrishnan Shiva, Wilhelmer Christoph, Stepanoff Sergei P, Stampfer Bernhard, Ghosh Subir, Oberoi Aaryan, Waldhoer Dominic, Chen Chen, Redwing Joan M, Wolfe Douglas E, Grasser Tibor, Das Saptarshi

机构信息

Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA.

Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040, Vienna, Austria.

出版信息

Nat Commun. 2024 Dec 4;15(1):10562. doi: 10.1038/s41467-024-54283-1.

Abstract

While defects are undesirable for the reliability of electronic devices, particularly in scaled microelectronics, they have proven beneficial in numerous quantum and energy-harvesting applications. However, their potential for new computational paradigms, such as neuromorphic and brain-inspired computing, remains largely untapped. In this study, we harness defects in aggressively scaled field-effect transistors based on two-dimensional semiconductors to accelerate a stochastic inference engine that offers remarkable noise resilience. We use atomistic imaging, density functional theory calculations, device modeling, and low-temperature transport experiments to offer comprehensive insight into point defects in WSe FETs and their impact on random telegraph noise. We then use random telegraph noise to construct a stochastic encoder and demonstrate enhanced inference accuracy for noise-inflicted medical-MNIST images compared to a deterministic encoder, utilizing a pre-trained spiking neural network. Our investigation underscores the importance of leveraging intrinsic point defects in 2D materials as opportunities for neuromorphic computing.

摘要

虽然缺陷对于电子设备的可靠性而言是不利的,尤其是在按比例缩小的微电子领域,但事实证明,它们在众多量子和能量收集应用中是有益的。然而,它们在诸如神经形态计算和受大脑启发的计算等新计算范式中的潜力在很大程度上仍未得到开发。在本研究中,我们利用基于二维半导体的深度按比例缩小的场效应晶体管中的缺陷,来加速一个具有卓越抗噪声能力的随机推理引擎。我们使用原子成像、密度泛函理论计算、器件建模和低温输运实验,以全面深入了解WSe场效应晶体管中的点缺陷及其对随机电报噪声的影响。然后,我们利用随机电报噪声构建一个随机编码器,并利用预训练的脉冲神经网络,证明与确定性编码器相比,对于受噪声影响的医学MNIST图像,其推理精度有所提高。我们的研究强调了利用二维材料中的固有点缺陷作为神经形态计算机会的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c11f/11618794/551bca442c6c/41467_2024_54283_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验