Brent Mikkel Bo, Emmanuel Thomas
Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus, Denmark.
Department of Dermatology, Aarhus University Hospital, 8200, Aarhus, Denmark.
Calcif Tissue Int. 2023 Jan;112(1):1-12. doi: 10.1007/s00223-022-01035-2. Epub 2022 Oct 29.
Static and dynamic bone histomorphometry and identification of bone cells in culture are labor-intensive and highly repetitive tasks. Several computer-assisted methods have been proposed to ease these tasks and to take advantage of the increased computational power available today. The present review aimed to provide an overview of contemporary methods utilizing specialized computer software to perform bone histomorphometry or identification of bone cells in culture. In addition, a brief historical perspective on bone histomorphometry is included. We identified ten publications using five different computer-assisted approaches (1) ImageJ and BoneJ; (2) Histomorph: OsteoidHisto, CalceinHisto, and TrapHisto; (3) Fiji/ImageJ2 and Trainable Weka Segmentation (TWS); (4) Visiopharm and artificial intelligence (AI); and (5) Osteoclast identification using deep learning with Single Shot Detection (SSD) architecture, Darknet and You Only Look Once (YOLO), or watershed algorithm (OC_Finder). The review also highlighted a substantial need for more validation studies that evaluate the accuracy of the new computational methods to the manual and conventional analyses of histological bone specimens and cells in culture using microscopy. However, a substantial evolution has occurred during the last decade to identify and separate bone cells and structures of interest. Most early studies have used simple image segmentation to separate structures of interest, whereas the most recent studies have utilized AI and deep learning. AI has been proposed to substantially decrease the amount of time needed for analyses and enable unbiased assessments. Despite the clear advantages of highly sophisticated computational methods, the limited nature of existing validation studies, particularly those that assess the accuracy of the third-generation methods compared to the second-generation methods, appears to be an important reason that these techniques have failed to gain wide acceptance.
静态和动态骨组织形态计量学以及培养中骨细胞的鉴定是劳动密集型且高度重复的任务。已经提出了几种计算机辅助方法来简化这些任务,并利用当今可用的增强计算能力。本综述旨在概述利用专门计算机软件进行骨组织形态计量学或培养中骨细胞鉴定的当代方法。此外,还包括对骨组织形态计量学的简要历史回顾。我们确定了十篇使用五种不同计算机辅助方法的出版物:(1) ImageJ和BoneJ;(2) Histomorph:类骨质组织学、钙黄绿素组织学和抗酒石酸酸性磷酸酶组织学;(3) Fiji/ImageJ2和可训练的Weka分割(TWS);(4) Visiopharm和人工智能(AI);以及(5) 使用具有单阶段检测(SSD)架构、Darknet和你只看一次(YOLO)的深度学习或分水岭算法(破骨细胞识别器)进行破骨细胞鉴定。该综述还强调,迫切需要更多的验证研究,以评估新计算方法相对于使用显微镜对组织学骨标本和培养中的细胞进行手动和传统分析的准确性。然而,在过去十年中,在识别和分离感兴趣的骨细胞和结构方面已经发生了重大进展。大多数早期研究使用简单的图像分割来分离感兴趣的结构,而最近的研究则利用了人工智能和深度学习。有人提出人工智能可以大幅减少分析所需的时间,并实现无偏评估。尽管高度复杂的计算方法具有明显优势,但现有验证研究的局限性,特别是那些评估第三代方法相对于第二代方法准确性的研究,似乎是这些技术未能获得广泛接受的一个重要原因。