Manne Sai Kumar Reddy, Martin Brendan, Roy Tyler, Neilson Ryan, Peters Rebecca, Chillara Meghana, Lary Christine W, Motyl Katherine J, Wan Michael
Northeastern University.
MaineHealth Institute for Research.
Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:6926-6935. doi: 10.1109/cvprw63382.2024.00686. Epub 2024 Sep 27.
Osteoclast cell image analysis plays a key role in osteoporosis research, but it typically involves extensive manual image processing and hand annotations by a trained expert. In the last few years, a handful of machine learning approaches for osteoclast image analysis have been developed, but none have addressed the full instance segmentation task required to produce the same output as that of the human expert led process. Furthermore, none of the prior, fully automated algorithms have publicly available code, pretrained models, or annotated datasets, inhibiting reproduction and extension of their work. We present a new dataset with ~2 × 10 expert annotated mouse osteoclast masks, together with a deep learning instance segmentation method which works for both in vitro mouse osteoclast cells on plastic tissue culture plates and human osteoclast cells on bone chips. To our knowledge, this is the first work to automate the full osteoclast instance segmentation task. Our method achieves a performance of 0.82 mAP (mean average precision at intersection-over-union threshold of 0.5) in cross validation for mouse osteoclasts. We present a novel uclei-aware steoclast nstance gmentation training strategy () based on the unique biology of osteoclasts, to improve the model's generalizability and boost the mAP from 0.60 to 0.82 on human osteoclasts. We publish our annotated mouse osteoclast image dataset, instance segmentation models, and code at github.com/michaelwwan/noise to enable reproducibility and to provide a public tool to accelerate osteoporosis research.
破骨细胞图像分析在骨质疏松症研究中起着关键作用,但通常需要经过训练的专家进行大量的手动图像处理和手工注释。在过去几年中,已经开发了一些用于破骨细胞图像分析的机器学习方法,但没有一种方法能够解决生成与人工专家主导过程相同输出所需的完整实例分割任务。此外,之前的所有全自动算法都没有公开可用的代码、预训练模型或注释数据集,这阻碍了它们工作的再现和扩展。我们提出了一个新的数据集,其中包含约2×10个由专家注释的小鼠破骨细胞掩码,以及一种深度学习实例分割方法,该方法适用于塑料组织培养板上的体外小鼠破骨细胞和骨芯片上的人类破骨细胞。据我们所知,这是第一项实现破骨细胞完整实例分割任务自动化的工作。我们的方法在小鼠破骨细胞的交叉验证中实现了0.82 mAP(交并比阈值为0.5时的平均平均精度)的性能。我们基于破骨细胞的独特生物学特性提出了一种新颖的细胞核感知破骨细胞实例分割训练策略(),以提高模型的通用性,并将人类破骨细胞的mAP从0.6提升到0.82。我们在github.com/michaelwwan/noise上发布了我们注释的小鼠破骨细胞图像数据集、实例分割模型和代码,以实现可重复性,并提供一个公共工具来加速骨质疏松症研究。