Suppr超能文献

基于静息态功能磁共振成像图像脑网络分析和迁移学习神经网络的注意力缺陷多动障碍诊断模型优化方法

Diagnostic model optimization method for ADHD based on brain network analysis of resting-state fMRI images and transfer learning neural network.

作者信息

Meng Xiaojing, Zhuo Wenjie, Ge Peng, Zou Bin, Zhu Yao, Liu Weidong, Li Xuzhou

机构信息

XuZhou Medical University, Xuzhou, China.

Collaborative Innovation Center of Artificial Intelligence, Zhejiang University, Hangzhou, China.

出版信息

Front Hum Neurosci. 2022 Oct 14;16:1005425. doi: 10.3389/fnhum.2022.1005425. eCollection 2022.

Abstract

Attention deficit and hyperactivity disorder (ADHD) is a common inherited disease of the nervous system whose cause(s) and pathogenesis remain unclear. Currently, the diagnosis of ADHD is mainly based on clinical experience and guidelines that have laid out some diagnostic standards. Our study aimed to apply a learning-based classification method to assist the ADHD diagnosis based on high-dimensional resting-state fMRI. Our study selected the ADHD-200 Peking dataset of resting-state fMRI, which has an ADHD patient ( = 142) group and a typically developing control (TDC) healthy control ( = 102) group. We first used Pearson and partial correlation coefficients to perform functional connectivity (FC) analysis between ROIs. Then, the Pearson and partial correlation coefficient matrices were concatenated into a dual-channel feature to build a dual data channel as input to the transfer learning neural network (TLNN) architecture. Finally, we transferred the pretrained model from the auxiliary domain to our target domain and fine-tuned it. Based on the Pearson correlation coefficient, FC between ROIs was detected in 22 brain regions, including the fusiform gyrus, superior frontal gyrus, posterior superior temporal sulcus, inferior parietal lobule, anterior cingulate cortex, and parahippocampal gyrus. Based on the partial correlation coefficient, we found FC in the salient network, default network, sensory-motor network, dorsal attention network, and cerebellum network. With the TLNN architecture, we solved the problem of insufficient training data and improved the sensitivity of the classification method. When the VGG model (fine-tuned transfer strategy, 1,024 fully connected layers) was applied, the accuracy of TLNN classification ultimately reached 82%. Our study suggests that completing the training of the target domain by transferring the prior knowledge of the auxiliary domain is effective in solving the classification problem of small sample datasets. Based on prior knowledge of FC analysis, TLNN classification may assist ADHD diagnosis in a new way.

摘要

注意缺陷多动障碍(ADHD)是一种常见的神经系统遗传性疾病,其病因和发病机制尚不清楚。目前,ADHD的诊断主要基于临床经验以及已制定的一些诊断标准的指南。我们的研究旨在应用基于学习的分类方法,基于高维静息态功能磁共振成像(fMRI)辅助ADHD诊断。我们的研究选取了ADHD-200北京静息态fMRI数据集,该数据集有一个ADHD患者(n = 142)组和一个发育正常的对照(TDC)健康对照组(n = 102)。我们首先使用Pearson相关系数和偏相关系数对感兴趣区域(ROIs)之间进行功能连接(FC)分析。然后,将Pearson相关系数矩阵和偏相关系数矩阵连接成一个双通道特征,构建一个双数据通道作为迁移学习神经网络(TLNN)架构的输入。最后,我们将预训练模型从辅助域迁移到目标域并进行微调。基于Pearson相关系数,在22个脑区检测到ROIs之间的FC,包括梭状回、额上回、颞上沟后部、顶下小叶、前扣带回皮质和海马旁回。基于偏相关系数,我们在突显网络、默认网络、感觉运动网络、背侧注意网络和小脑网络中发现了FC。使用TLNN架构,我们解决了训练数据不足的问题,并提高了分类方法的敏感性。当应用VGG模型(微调迁移策略,1024个全连接层)时,TLNN分类的准确率最终达到了82%。我们的研究表明,通过迁移辅助域的先验知识来完成目标域的训练,对于解决小样本数据集的分类问题是有效的。基于FC分析的先验知识,TLNN分类可能以一种新的方式辅助ADHD诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0be1/9614268/a134624c52be/fnhum-16-1005425-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验