Suppr超能文献

COVID-19期间焦虑严重程度分类的数字表型分析

Digital phenotyping for classification of anxiety severity during COVID-19.

作者信息

Nguyen Binh, Ivanov Martin, Bhat Venkat, Krishnan Sri

机构信息

Signal Analysis Research (SAR) Group, Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada.

Interventional Psychiatry Program, St. Michael's Hospital, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.

出版信息

Front Digit Health. 2022 Oct 13;4:877762. doi: 10.3389/fdgth.2022.877762. eCollection 2022.

Abstract

COVID-19 has led to an increase in anxiety among Canadians. Canadian Perspectives Survey Series (CPSS) is a dataset created by Statistics Canada to monitor the effects of COVID-19 among Canadians. Survey data were collected to evaluate health and health-related behaviours. This work evaluates CPSS2 and CPSS4, which were collected in May and July of 2020, respectively. The survey data consist of up to 102 questions. This work proposes the use of the survey data characteristics to identify the level of anxiety within the Canadian population during the first- and second-phases of COVID-19 and is validated by using the General Anxiety Disorder (GAD)-7 questionnaire. Minimum redundancy maximum relevance (mRMR) is applied to select the top features to represent user anxiety, and support vector machine (SVM) is used to classify the separation of anxiety severity. We employ SVM for binary classification with 10-fold cross validation to separate the labels of and anxiety to achieve an overall accuracy of and for CPSS2 and CPSS4, respectively. After analysis, we compared the results of the first and second phases of COVID-19 and determined a subset of the features that could be represented as pseudo passive (PP) data. The accurate classification provides a proxy on the potential onsets of anxiety to provide tailored interventions. Future works can augment the proposed PP data for carrying out a more detailed digital phenotyping.

摘要

新冠疫情导致加拿大民众的焦虑情绪有所增加。《加拿大视角调查系列》(CPSS)是加拿大统计局创建的一个数据集,用于监测新冠疫情对加拿大人的影响。收集调查数据以评估健康状况和与健康相关的行为。这项工作评估了分别于2020年5月和7月收集的CPSS2和CPSS4。调查数据包含多达102个问题。这项工作提议利用调查数据特征来识别新冠疫情第一阶段和第二阶段加拿大民众的焦虑水平,并通过使用广泛性焦虑障碍(GAD)-7问卷进行验证。应用最小冗余最大相关性(mRMR)来选择代表用户焦虑的顶级特征,并使用支持向量机(SVM)对焦虑严重程度的分类进行区分。我们采用SVM进行二元分类,并进行10折交叉验证,以区分轻度和重度焦虑的标签,CPSS2和CPSS4的总体准确率分别达到了[具体准确率1]和[具体准确率2]。经过分析,我们比较了新冠疫情第一阶段和第二阶段的结果,并确定了一组可表示为伪被动(PP)数据的特征子集。准确的分类为焦虑的潜在发作提供了一个代理指标,以便提供针对性的干预措施。未来的工作可以扩充所提出的PP数据,以进行更详细的数字表型分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c080/9612961/75e3c3b14d65/fdgth-04-877762-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验