Suppr超能文献

使用工业机器人进行柔顺操作任务的图形技能模型中具有未知约束的贝叶斯优化。

Bayesian optimization with unknown constraints in graphical skill models for compliant manipulation tasks using an industrial robot.

作者信息

Gabler Volker, Wollherr Dirk

机构信息

All authors are with the Chair of Automatic Control Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.

出版信息

Front Robot AI. 2022 Oct 14;9:993359. doi: 10.3389/frobt.2022.993359. eCollection 2022.

Abstract

This article focuses on learning manipulation skills from episodic reinforcement learning (RL) in unknown environments using industrial robot platforms. These platforms usually do not provide the required compliant control modalities to cope with unknown environments, e.g., force-sensitive contact tooling. This requires designing a suitable controller, while also providing the ability of adapting the controller parameters from collected evidence online. Thus, this work extends existing work on meta-learning for graphical skill-formalisms. First, we outline how a hybrid force-velocity controller can be applied to an industrial robot in order to design a graphical skill-formalism. This skill-formalism incorporates available task knowledge and allows for online episodic RL. In contrast to the existing work, we further propose to extend this skill-formalism by estimating the success probability of the task to be learned by means of factor graphs. This method allows assigning samples to individual factors, i.e., Gaussian processes (GPs) more efficiently and thus allows improving the learning performance, especially at early stages, where successful samples are usually only drawn in a sparse manner. Finally, we propose suitable constraint GP models and acquisition functions to obtain new samples in order to optimize the information gain, while also accounting for the success probability of the task. We outline a specific application example on the task of inserting the tip of a screwdriver into a screwhead with an industrial robot and evaluate our proposed extension against the state-of-the-art methods. The collected data outline that our method allows artificial agents to obtain feasible samples faster than existing approaches, while achieving a smaller regret value. This highlights the potential of our proposed work for future robotic applications.

摘要

本文聚焦于利用工业机器人平台在未知环境中从 episodic 强化学习(RL)中学习操作技能。这些平台通常不提供应对未知环境所需的柔顺控制模式,例如力敏接触工具。这就需要设计一个合适的控制器,同时还要具备根据在线收集的证据调整控制器参数的能力。因此,这项工作扩展了现有的关于图形技能形式主义的元学习工作。首先,我们概述了如何将混合力 - 速度控制器应用于工业机器人,以设计一种图形技能形式主义。这种技能形式主义整合了可用的任务知识,并允许进行在线 episodic RL。与现有工作不同的是,我们进一步提议通过因子图估计待学习任务的成功概率来扩展这种技能形式主义。这种方法允许更有效地将样本分配给各个因子,即高斯过程(GPs),从而提高学习性能,特别是在早期阶段,此时成功样本通常只是稀疏地抽取。最后,我们提出合适的约束 GP 模型和采集函数来获取新样本,以优化信息增益,同时考虑任务的成功概率。我们概述了一个关于用工业机器人将螺丝刀尖端插入螺丝头任务的具体应用示例,并将我们提出的扩展方法与最先进的方法进行评估。收集到的数据表明,我们的方法允许智能体比现有方法更快地获得可行样本,同时实现更小的遗憾值。这突出了我们提出的工作在未来机器人应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa69/9614383/c4895381f2e6/frobt-09-993359-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验