Suppr超能文献

基于深度神经网络的内容分析算法的系统综述。

Systematic review of content analysis algorithms based on deep neural networks.

作者信息

Rezaeenour Jalal, Ahmadi Mahnaz, Jelodar Hamed, Shahrooei Roshan

机构信息

Department of Industrial Engineering, University of Qom, Qom, Iran.

Faculty of computer science, Dalhousie University, 6050 University Ave, Halifax, NS B3H 1W5 Canada.

出版信息

Multimed Tools Appl. 2023;82(12):17879-17903. doi: 10.1007/s11042-022-14043-z. Epub 2022 Oct 24.

Abstract

Today according to social media, the internet, Etc. Data is rapidly produced and occupies a large space in systems that have resulted in enormous data warehouses; the progress in information technology has significantly increased the speed and ease of data flow.text mining is one of the most important methods for extracting a useful model through extracting and adapting knowledge from data sets. However, many studies have been conducted based on the usage of deep learning for text processing and text mining issues.The idea and method of text mining are one of the fields that seek to extract useful information from unstructured textual data that is used very today. Deep learning and machine learning techniques in classification and text mining and their type are discussed in this paper as well. Neural networks of various kinds, namely, ANN, RNN, CNN, and LSTM, are the subject of study to select the best technique. In this study, we conducted a Systematic Literature Review to extract and associate the algorithms and features that have been used in this area. Based on our search criteria, we retrieved 130 relevant studies from electronic databases between 1997 and 2021; we have selected 43 studies for further analysis using inclusion and exclusion criteria in Section 3.2. According to this study, hybrid LSTM is the most widely used deep learning algorithm in these studies, and SVM in machine learning method high accuracy in result shown.

摘要

如今,根据社交媒体、互联网等,数据正在快速产生,并在那些已形成巨大数据仓库的系统中占据大量空间;信息技术的进步显著提高了数据流的速度和便捷性。文本挖掘是通过从数据集中提取和适配知识来提取有用模型的最重要方法之一。然而,已经有许多基于深度学习在文本处理和文本挖掘问题上的应用而开展的研究。文本挖掘的理念和方法是当今致力于从非结构化文本数据中提取有用信息的领域之一。本文还讨论了深度学习和机器学习技术在分类和文本挖掘中的应用及其类型。各种神经网络,即人工神经网络(ANN)、循环神经网络(RNN)、卷积神经网络(CNN)和长短期记忆网络(LSTM),是为选择最佳技术而进行研究的对象。在本研究中,我们进行了一项系统文献综述,以提取并关联该领域中已使用的算法和特征。根据我们的搜索标准,我们从1997年至2021年的电子数据库中检索到130项相关研究;我们使用3.2节中的纳入和排除标准选择了43项研究进行进一步分析。根据这项研究,混合长短期记忆网络是这些研究中使用最广泛的深度学习算法,而在机器学习方法中,支持向量机(SVM)在结果中显示出高精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/529e/9589819/38ef5598f417/11042_2022_14043_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验