Johnston Stuart T, Faria Matthew
School of Mathematics and Statistics, The University of Melbourne, Victoria, Australia.
Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia.
Nanoscale. 2022 Nov 17;14(44):16502-16515. doi: 10.1039/d2nr04668g.
Designing nano-engineered particles capable of the delivery of therapeutic and diagnostic agents to a specific target remains a significant challenge. Understanding how interactions between particles and cells are impacted by the physicochemical properties of the particle will help inform rational design choices. Mathematical and computational techniques allow for details regarding particle-cell interactions to be isolated from the interwoven set of biological, chemical, and physical phenomena involved in the particle delivery process. Here we present a machine learning framework capable of elucidating particle-cell interactions from experimental data. This framework employs a data-driven modelling approach, augmented by established biological knowledge. Crucially, the model of particle-cell interactions learned by the framework can be interpreted and analysed, in contrast to the 'black box' models inherent to other machine learning approaches. We apply the framework to association data for thirty different particle-cell pairs. This library of data contains both adherent and suspension cell lines, as well as a diverse collection of particles. We consider hyperbranched polymer and poly(methacrylic acid) particles, from 6 nm to 1032 nm in diameter, with small molecule, monoclonal antibody, and peptide surface functionalisations. Despite the diverse nature of the experiments, the learned models of particle-cell interactions for each particle-cell pair are remarkably consistent: out of 2048 potential models, only four unique models are learned. The models reveal that nonlinear saturation effects are a key feature governing particle-cell interactions. Further, the framework provides robust estimates of particle performance, which facilitates quantitative evaluation of particle design choices.
设计能够将治疗和诊断剂递送至特定靶点的纳米工程颗粒仍然是一项重大挑战。了解颗粒与细胞之间的相互作用如何受到颗粒物理化学性质的影响,将有助于做出合理的设计选择。数学和计算技术能够从颗粒递送过程中涉及的生物、化学和物理现象的交织集合中分离出有关颗粒与细胞相互作用的细节。在此,我们提出了一个能够从实验数据中阐明颗粒与细胞相互作用的机器学习框架。该框架采用数据驱动的建模方法,并辅以已有的生物学知识。至关重要的是,与其他机器学习方法固有的“黑箱”模型不同,该框架学习到的颗粒与细胞相互作用模型可以进行解释和分析。我们将该框架应用于三十种不同颗粒与细胞对的关联数据。这个数据集包含贴壁细胞系和悬浮细胞系,以及各种各样的颗粒。我们考虑了直径从6纳米到1032纳米的超支化聚合物和聚(甲基丙烯酸)颗粒,其表面功能化有小分子、单克隆抗体和肽。尽管实验性质多样,但针对每个颗粒与细胞对学习到的颗粒与细胞相互作用模型却非常一致:在2048个潜在模型中,只学习到了四个独特的模型。这些模型表明,非线性饱和效应是控制颗粒与细胞相互作用的关键特征。此外,该框架提供了颗粒性能的可靠估计,这有助于对颗粒设计选择进行定量评估。