Department of Bioengineering, University of California, Los Angeles, CA 90095, United States.
Department of Bioengineering, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, Los Angeles, CA 90095, United States.
Bioorg Med Chem. 2018 Jun 1;26(10):2708-2718. doi: 10.1016/j.bmc.2017.07.012. Epub 2017 Jul 8.
Antimicrobial peptides are a class of membrane-active peptides that form a critical component of innate host immunity and possess a diversity of sequence and structure. Machine learning approaches have been profitably employed to efficiently screen sequence space and guide experiment towards promising candidates with high putative activity. In this mini-review, we provide an introduction to antimicrobial peptides and summarize recent advances in machine learning-enabled antimicrobial peptide discovery and design with a focus on a recent work Lee et al. Proc. Natl. Acad. Sci. USA 2016;113(48):13588-13593. This study reports the development of a support vector machine classifier to aid in the design of membrane active peptides. We use this model to discover membrane activity as a multiplexed function in diverse peptide families and provide interpretable understanding of the physicochemical properties and mechanisms governing membrane activity. Experimental validation of the classifier reveals it to have learned membrane activity as a unifying signature of antimicrobial peptides with diverse modes of action. Some of the discriminating rules by which it performs classification are in line with existing "human learned" understanding, but it also unveils new previously unknown determinants and multidimensional couplings governing membrane activity. Integrating machine learning with targeted experimentation can guide both antimicrobial peptide discovery and design and new understanding of the properties and mechanisms underpinning their modes of action.
抗菌肽是一类膜活性肽,是天然宿主免疫的重要组成部分,具有多样化的序列和结构。机器学习方法已被成功应用于高效筛选序列空间,并指导实验寻找具有高潜在活性的有前途的候选物。在这篇迷你综述中,我们将对抗菌肽进行介绍,并总结机器学习在抗菌肽发现和设计中的最新进展,重点介绍 Lee 等人在 2016 年发表于《美国国家科学院院刊》上的工作。Proc. Natl. Acad. Sci. USA 2016;113(48):13588-13593。这项研究报告了一种支持向量机分类器的开发,用于辅助设计具有膜活性的肽。我们使用该模型来发现不同肽家族中的膜活性作为一个多重功能,并提供对控制膜活性的物理化学性质和机制的可解释理解。对分类器的实验验证表明,它已经将膜活性学习为具有不同作用模式的抗菌肽的统一特征。它进行分类的一些判别规则符合现有的“人类学习”理解,但它也揭示了新的以前未知的决定因素和多维耦合,这些因素和多维耦合控制着膜活性。将机器学习与靶向实验相结合,可以指导抗菌肽的发现和设计,并加深对抗菌肽作用模式的性质和机制的理解。