Suppr超能文献

机器学到了什么?化学反应性的知识表示。

What Does the Machine Learn? Knowledge Representations of Chemical Reactivity.

作者信息

Kammeraad Joshua A, Goetz Jack, Walker Eric A, Tewari Ambuj, Zimmerman Paul M

机构信息

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.

Department of Statistics, University of Michigan, 1085 South University Avenue, Ann Arbor, Michigan 48109, United States.

出版信息

J Chem Inf Model. 2020 Mar 23;60(3):1290-1301. doi: 10.1021/acs.jcim.9b00721. Epub 2020 Mar 3.

Abstract

In a departure from conventional chemical approaches, data-driven models of chemical reactions have recently been shown to be statistically successful using machine learning. These models, however, are largely black box in character and have not provided the kind of chemical insights that historically advanced the field of chemistry. To examine the knowledgebase of machine-learning models-what does the machine learn-this article deconstructs black-box machine-learning models of a diverse chemical reaction data set. Through experimentation with chemical representations and modeling techniques, the analysis provides insights into the nature of how statistical accuracy can arise, even when the model lacks informative physical principles. By peeling back the layers of these complicated models we arrive at a minimal, chemically intuitive model (and no machine learning involved). This model is based on systematic reaction-type classification and Evans-Polanyi relationships within reaction types which are easily visualized and interpreted. Through exploring this simple model, we gain deeper understanding of the data set and uncover a means for expert interactions to improve the model's reliability.

摘要

与传统化学方法不同,最近数据驱动的化学反应模型已被证明在使用机器学习时具有统计学上的成功。然而,这些模型在很大程度上具有黑箱性质,并未提供历史上推动化学领域发展的那种化学见解。为了审视机器学习模型的知识库——机器学到了什么——本文解构了一个多样化化学反应数据集的黑箱机器学习模型。通过对化学表示和建模技术进行实验,该分析深入了解了即使模型缺乏信息性物理原理时统计准确性如何产生的本质。通过剥开这些复杂模型的层层外衣,我们得出了一个简单的、具有化学直观性的模型(且不涉及机器学习)。该模型基于系统的反应类型分类以及反应类型内的埃文斯 - 波拉尼关系,这些关系易于可视化和解释。通过探索这个简单模型,我们对数据集有了更深入的理解,并发现了专家交互以提高模型可靠性的一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/639d/7166311/643cdf6e60b6/nihms-1579538-f0002.jpg

相似文献

1
What Does the Machine Learn? Knowledge Representations of Chemical Reactivity.机器学到了什么?化学反应性的知识表示。
J Chem Inf Model. 2020 Mar 23;60(3):1290-1301. doi: 10.1021/acs.jcim.9b00721. Epub 2020 Mar 3.
7
Characterizing Uncertainty in Machine Learning for Chemistry.机器学习在化学中的不确定性描述。
J Chem Inf Model. 2023 Jul 10;63(13):4012-4029. doi: 10.1021/acs.jcim.3c00373. Epub 2023 Jun 20.

引用本文的文献

2
Local reaction condition optimization via machine learning.通过机器学习优化局部反应条件
J Mol Model. 2025 Apr 23;31(5):143. doi: 10.1007/s00894-025-06365-0.
3
Recommending reaction conditions with label ranking.通过标签排序推荐反应条件。
Chem Sci. 2025 Feb 3;16(9):4109-4118. doi: 10.1039/d4sc06728b. eCollection 2025 Feb 26.
5
Organic reactivity from mechanism to machine learning.从机理到机器学习的有机反应活性
Nat Rev Chem. 2021 Apr;5(4):240-255. doi: 10.1038/s41570-021-00260-x. Epub 2021 Mar 16.

本文引用的文献

9
Uncovering Subtle Ligand Effects of Phosphines Using Gold(I) Catalysis.利用金(I)催化揭示膦配体的细微效应
ACS Catal. 2017 Jun 2;7(6):3973-3978. doi: 10.1021/acscatal.7b00757. Epub 2017 May 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验