文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米工程模板聚合物粒子:在生物领域中导航。

Nanoengineered Templated Polymer Particles: Navigating the Biological Realm.

机构信息

Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia.

ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia.

出版信息

Acc Chem Res. 2016 Jun 21;49(6):1139-48. doi: 10.1021/acs.accounts.6b00088. Epub 2016 May 20.


DOI:10.1021/acs.accounts.6b00088
PMID:27203418
Abstract

Nanoengineered materials offer tremendous promise for developing the next generation of therapeutics. We are transitioning from simple research questions, such as "can this particle eradicate cancer cells?" to more sophisticated ones like "can we design a particle to preferentially deliver cargo to a specific cancer cell type?" These developments are poised to usher in a new era of nanoengineered drug delivery systems. We primarily work with templating methods for engineering polymer particles and investigate their biological interactions. Templates are scaffolds that facilitate the formation of particles with well-controlled size, shape, structure, stiffness, stability, and surface chemistry. In the past decade, breakthroughs in engineering new templates, combined with advances in coating techniques, including layer-by-layer (LbL) assembly, surface polymerization, and metal-phenolic network (MPN) coordination chemistry, have enabled particles with specific physicochemical properties to be engineered. While materials science offers an ever-growing number of new synthesis techniques, a central challenge of therapeutic delivery has become understanding how nanoengineered materials interact with biological systems. Increased collaboration between chemists, biologists, and clinicians has resulted in a vast research output on bio-nano interactions. Our understanding of cell-particle interactions has grown considerably, but conventional in vitro experimentation provides limited information, and understanding how to bridge the in vitro/in vivo gap is a continuing challenge. As has been demonstrated in other fields, there is now a growing interest in applying computational approaches to advance this area. A considerable knowledge base is now emerging, and with it comes new and exciting opportunities that are already being capitalized on through the translation of materials into the clinic. In this Account, we outline our perspectives gained from a decade of work at the interface between polymer particle engineering and bio-nano interactions. We divide our research into three areas: (i) biotrafficking, including cellular association, intracellular transport, and biodistribution; (ii) biodegradation and how to achieve controlled, responsive release of therapeutics; and (iii) applications, including drug delivery, controlling immunostimulatory responses, biosensing, and microreactors. There are common challenges in these areas for groups developing nanoengineered therapeutics. A key "lesson-learned" has been the considerable challenge of staying informed about the developments relevant to this field. There are a number of reasons for this, most notably the interdisciplinary nature of the work, the large numbers of researchers and research outputs, and the limited standardization in technique nomenclature. Additionally, a large body of work is being generated with limited central archiving, other than vast general databases. To help address these points, we have created a web-based tool to organize our past, present, and future work [Bio-nano research knowledgebase, http://bionano.eng.unimelb.edu.au/knowledge_base/ (accessed May 2, 2016)]. This tool is intended to serve as a first step toward organizing results in this large, complex area. We hope that this will inspire researchers, both in generating new ideas and also in collecting, collating, and sharing their experiences to guide future research.

摘要

纳米工程材料为开发下一代疗法提供了巨大的前景。我们正在从简单的研究问题(例如“这种粒子能否消除癌细胞?”)过渡到更复杂的问题,例如“我们能否设计一种粒子来优先将货物递送到特定的癌细胞类型?”这些发展有望开创纳米工程药物输送系统的新时代。我们主要使用模板方法来工程聚合物粒子,并研究它们的生物学相互作用。模板是促进形成具有良好控制的尺寸、形状、结构、刚性、稳定性和表面化学的粒子的支架。在过去的十年中,新型模板的工程突破,结合涂层技术的进步,包括层层(LbL)组装、表面聚合和金属-酚网络(MPN)配位化学,使得具有特定物理化学性质的粒子得以工程化。虽然材料科学提供了越来越多的新合成技术,但治疗输送的一个核心挑战已经成为理解纳米工程材料如何与生物系统相互作用。化学家、生物学家和临床医生之间的合作增加,导致了大量关于生物-纳米相互作用的研究成果。我们对细胞-粒子相互作用的理解有了很大的提高,但是传统的体外实验提供的信息有限,并且理解如何弥合体外/体内的差距仍然是一个持续的挑战。正如在其他领域所证明的那样,现在人们越来越有兴趣应用计算方法来推进这一领域。现在已经出现了相当大的知识库,并且随之而来的是新的令人兴奋的机会,这些机会已经通过将材料转化为临床应用而得到了利用。在本报告中,我们概述了我们从聚合物粒子工程和生物-纳米相互作用界面十年工作中获得的观点。我们将我们的研究分为三个领域:(i)生物运输,包括细胞关联、细胞内运输和生物分布;(ii)生物降解以及如何实现治疗药物的可控、响应性释放;和(iii)应用,包括药物输送、控制免疫刺激反应、生物传感和微反应器。开发纳米工程疗法的小组在这些领域都面临着共同的挑战。一个重要的“经验教训”是,要了解与该领域相关的发展,就面临着相当大的挑战。造成这种情况的原因有很多,最主要的是工作的跨学科性质、大量的研究人员和研究成果,以及技术命名法的标准化有限。此外,大量的工作是在没有大量通用数据库的情况下生成的。为了解决这些问题,我们创建了一个基于网络的工具来组织我们过去、现在和未来的工作[生物-纳米研究知识库,http://bionano.eng.unimelb.edu.au/knowledge_base/(于 2016 年 5 月 2 日访问)]。该工具旨在作为组织这一庞大而复杂领域的结果的第一步。我们希望这将激发研究人员的灵感,无论是在产生新想法方面,还是在收集、整理和分享他们的经验以指导未来的研究方面。

相似文献

[1]
Nanoengineered Templated Polymer Particles: Navigating the Biological Realm.

Acc Chem Res. 2016-5-20

[2]
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).

J Phys Condens Matter. 2008-2-13

[3]
Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.

Acc Chem Res. 2014-4-17

[4]
Emerging techniques in proteomics for probing nano-bio interactions.

ACS Nano. 2012-12-7

[5]
Hydrogels for Therapeutic Delivery: Current Developments and Future Directions.

Biomacromolecules. 2017-1-10

[6]
Engineering the Bio-Nano Interface Using a Multifunctional Coordinating Polymer Coating.

Acc Chem Res. 2020-6-16

[7]
Toward therapeutic delivery with layer-by-layer engineered particles.

ACS Nano. 2011-5-25

[8]
Functional Ligand-Enabled Particle Assembly for Bio-Nano Interactions.

Acc Chem Res. 2023-7-4

[9]
Metal-Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications.

Acc Chem Res. 2019-4-12

[10]
Layers and Multilayers of Self-Assembled Polymers: Tunable Engineered Extracellular Matrix Coatings for Neural Cell Growth.

Langmuir. 2018-3-12

引用本文的文献

[1]
Oxidative Coupling and Self-Assembly of Polyphenols for the Development of Novel Biomaterials.

ACS Omega. 2024-4-26

[2]
Engineered biomimetic micro/nano-materials for tissue regeneration.

Front Bioeng Biotechnol. 2023-7-4

[3]
Size-Controlled DNA Tile Self-Assembly Nanostructures Through Caveolae-Mediated Endocytosis for Signal-Amplified Imaging of MicroRNAs in Living Cells.

Adv Sci (Weinh). 2023-7

[4]
The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy.

Beilstein J Nanotechnol. 2023-3-17

[5]
The Study of Exosomes-Encapsulated mPEG-PLGA Polymer Drug-Loaded Particles for Targeted Therapy of Liver Cancer.

J Oncol. 2022-9-17

[6]
Cell membrane-covered nanoparticles as biomaterials.

Natl Sci Rev. 2019-5

[7]
Amyloidosis Inhibition, a New Frontier of the Protein Corona.

Nano Today. 2020-12

[8]
Functionalized Green Synthesis of CuO-Nanoparticles: Novel Prospects as Antibacterial and Antibiofilm Agents.

Biomolecules. 2020-1-22

[9]
Polymer Nanocontainers for Intracellular Delivery.

Angew Chem Int Ed Engl. 2020-2-17

[10]
Polyphenol-Based Particles for Theranostics.

Theranostics. 2019-5-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索