Suppr超能文献

可调节的合成丝状共培养物中的种群动态。

Tunable population dynamics in a synthetic filamentous coculture.

机构信息

AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany.

Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany.

出版信息

Microbiologyopen. 2022 Oct;11(5):e1324. doi: 10.1002/mbo3.1324.

Abstract

Microbial cocultures are used as a tool to stimulate natural product biosynthesis. However, studies often empirically combine different organisms without a deeper understanding of the population dynamics. As filamentous organisms offer a vast metabolic diversity, we developed a model filamentous coculture of the cellulolytic fungus Trichoderma reesei RUT-C30 and the noncellulolytic bacterium Streptomyces coelicolor A3(2). The coculture was set up to use α-cellulose as a carbon source. This established a dependency of S. coelicolor on hydrolysate sugars released by T. reesei cellulases. To provide detailed insight into coculture dynamics, we applied high-throughput online monitoring of the respiration rate and fluorescence of the tagged strains. The respiration rate allowed us to distinguish the conditions of successful cellulase formation. Furthermore, to dissect the individual strain contributions, T. reesei and S. coelicolor were tagged with mCherry and mNeonGreen (mNG) fluorescence proteins, respectively. When evaluating varying inoculation ratios, it was observed that both partners outcompete the other when given a high inoculation advantage. Nonetheless, adequate proportions for simultaneous growth of both partners, cellulase, and pigment production could be determined. Finally, population dynamics were also tuned by modulating abiotic factors. Increased osmolality provided a growth advantage to S. coelicolor. In contrast, an increase in shaking frequency had a negative effect on S. coelicolor biomass formation, promoting T. reesei. This comprehensive analysis fills important knowledge gaps in the control of complex cocultures and accelerates the setup of other tailor-made coculture bioprocesses.

摘要

微生物共培养被用作刺激天然产物生物合成的工具。然而,许多研究往往只是凭经验将不同的生物组合在一起,而没有深入了解种群动态。由于丝状生物具有广泛的代谢多样性,我们开发了一种模式丝状共培养物,由纤维素分解真菌里氏木霉 RUT-C30 和非纤维素分解细菌链霉菌 A3(2)组成。该共培养物以α-纤维素为碳源,这使得链霉菌依赖于里氏木霉纤维素酶释放的水解糖。为了更深入地了解共培养动态,我们应用高通量在线监测标记菌株的呼吸率和荧光。呼吸率可以帮助我们区分成功形成纤维素酶的条件。此外,为了剖析各个菌株的贡献,里氏木霉和链霉菌分别被标记上 mCherry 和 mNeonGreen(mNG)荧光蛋白。在评估不同接种比例时,观察到当给予高接种优势时,两个伙伴都会相互竞争,从而淘汰对方。然而,通过调整非生物因素,仍可以确定两个伙伴同时生长、纤维素酶和色素生产的适当比例。最后,种群动态也可以通过调节非生物因素来控制。增加渗透压为链霉菌提供了生长优势。相比之下,增加摇床频率对链霉菌生物量的形成产生负面影响,促进了里氏木霉的生长。这项全面的分析填补了复杂共培养物控制方面的重要知识空白,并加速了其他定制共培养生物工艺的设置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb74/9531331/795e7e5bdc83/MBO3-11-e1324-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验