Suppr超能文献

机器学习揭开了神经胶质瘤分型与治疗的奥秘。

Machine learning unravels the mysteries of glioma typing and treatment.

作者信息

Dang Ying, Chen Youhu, Chen Jie, Yuan Guoqiang, Pan Yawen

机构信息

The Second Medical College of Lanzhou University, Lanzhou, Gansu, 730030, PR China.

Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, PR China.

出版信息

Biochem Biophys Rep. 2025 Mar 7;42:101969. doi: 10.1016/j.bbrep.2025.101969. eCollection 2025 Jun.

Abstract

Gliomas, which are complex primary malignant brain tumors known for their heterogeneous and invasive nature, present substantial challenges for both treatment and prognosis. Recent advancements in whole-genome studies have opened new avenues for investigating glioma mechanisms and therapies. Through single-cell analysis, we identified a specific cluster of cancer cell-related genes within gliomas. By leveraging diverse datasets and employing non-negative matrix factorization (NMF), we developed a glioma subtyping method grounded in this identified gene set. Our exploration delved into the clinical implications and underlying regulatory frameworks of the newly defined subtype classification, revealing its intimate ties to glioma malignancy and prognostic outcomes. Comparative assessments between the identified subtypes revealed differences in clinical features, immune modulation, and the tumor microenvironment (TME). Using tools such as the R package, weighted gene co-expression network analysis (WGCNA), machine learning methodologies, survival analyses, and protein-protein interaction (PPI) networks, we identified key driver genes influencing subtype differentiation while quantifying associated outcomes. This study not only sheds light on the biological mechanisms within gliomas but also paves the way for precise molecular targeted therapies within this intricate disease landscape.

摘要

神经胶质瘤是一种复杂的原发性恶性脑肿瘤,以其异质性和侵袭性而闻名,在治疗和预后方面都面临着巨大挑战。全基因组研究的最新进展为研究神经胶质瘤的机制和治疗方法开辟了新途径。通过单细胞分析,我们在神经胶质瘤中确定了一组特定的癌细胞相关基因。通过利用各种数据集并采用非负矩阵分解(NMF),我们基于这一确定的基因集开发了一种神经胶质瘤亚型分类方法。我们的探索深入研究了新定义的亚型分类的临床意义和潜在调控框架,揭示了其与神经胶质瘤恶性程度和预后结果的密切联系。对所确定亚型之间的比较评估揭示了临床特征、免疫调节和肿瘤微环境(TME)方面的差异。使用诸如R包、加权基因共表达网络分析(WGCNA)、机器学习方法、生存分析和蛋白质-蛋白质相互作用(PPI)网络等工具,我们确定了影响亚型分化的关键驱动基因,同时量化了相关结果。这项研究不仅揭示了神经胶质瘤内部的生物学机制,也为在这一复杂疾病领域开展精确的分子靶向治疗铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95f4/11930589/37bad05512cd/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验