Suppr超能文献

结合图神经网络与化学直觉的可解释溶剂化自由能预测

Explainable Solvation Free Energy Prediction Combining Graph Neural Networks with Chemical Intuition.

作者信息

Low Kaycee, Coote Michelle L, Izgorodina Ekaterina I

机构信息

Monash Computational Chemistry Group, School of Chemistry, Monash University, Clayton, Victoria3800, Australia.

Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia5042, Australia.

出版信息

J Chem Inf Model. 2022 Nov 28;62(22):5457-5470. doi: 10.1021/acs.jcim.2c01013. Epub 2022 Nov 1.

Abstract

The prediction of a molecule's solvation Gibbs free (Δ) energy in a given solvent is an important task which has traditionally been carried out via quantum chemical continuum methods or force field-based molecular simulations. Machine learning (ML) and graph neural networks in particular have emerged as powerful techniques for elucidating structure-property relationships. This work presents a graph neural network (GNN) for the prediction of Δ which, in addition to encoding typical atom and bond-level features, incorporates chemically intuitive, solvation-relevant parameters into the featurization process: semiempirical partial atomic charges and solvent dielectric constant. Solute-solvent interactions are included via an interaction map layer which can be visualized to examine solubility-enhancing or -decreasing interactions learnt by the model. On a test set of small organic molecules, our GNN predicts Δ in water and cyclohexane with an accuracy comparable to polarizable and ab initio generated force field methods [mean absolute error (MAE) = 0.4 and 0.2 kcal mol, respectively], without the need for any molecular simulation. For the FreeSolv data set of hydration free energies, the test MAE is 0.7 kcal mol. Interpretability and applicability of the model is highlighted through several examples including rationalizing the increased solubility of modified diaminoanthraquinones in organic solvents. The clear explanations afforded by our GNN allow for easy understanding of the model's predictions, giving the experimental chemist confidence in employing ML models toward more optimized synthetic routes.

摘要

预测给定溶剂中分子的溶剂化吉布斯自由能(Δ)是一项重要任务,传统上是通过量子化学连续介质方法或基于力场的分子模拟来完成的。机器学习(ML),特别是图神经网络,已成为阐明结构-性质关系的强大技术。这项工作提出了一种用于预测Δ的图神经网络(GNN),除了对典型的原子和键级特征进行编码外,还将化学直观的、与溶剂化相关的参数纳入特征化过程:半经验部分原子电荷和溶剂介电常数。溶质-溶剂相互作用通过相互作用图谱层纳入,该层可以可视化,以检查模型学习到的增强或降低溶解度的相互作用。在一组小分子有机化合物的测试集上,我们的GNN预测水中和环己烷中的Δ,其准确性与可极化和从头算生成的力场方法相当(平均绝对误差(MAE)分别为0.4和0.2 kcal/mol),而无需任何分子模拟。对于水合自由能的FreeSolv数据集,测试MAE为0.7 kcal/mol。通过几个例子突出了该模型的可解释性和适用性,包括合理化改性二氨基蒽醌在有机溶剂中溶解度增加的原因。我们的GNN提供的清晰解释使人们能够轻松理解模型的预测,让实验化学家有信心将ML模型用于更优化的合成路线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验