Department of Chemistry and Biochemistry - Faculty of Sciences, University of Porto - Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal.
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
J Chem Inf Model. 2024 Apr 8;64(7):2250-2262. doi: 10.1021/acs.jcim.3c00544. Epub 2023 Aug 21.
Many challenges persist in developing accurate computational models for predicting solvation free energy (Δ). Despite recent developments in Machine Learning (ML) methodologies that outperformed traditional quantum mechanical models, several issues remain concerning explanatory insights for broad chemical predictions with an acceptable speed-accuracy trade-off. To overcome this, we present a novel supervised ML model to predict the Δ for an array of solvent-solute pairs. Using two different ensemble regressor algorithms, we made fast and accurate property predictions using open-source chemical features, encoding complex electronic, structural, and surface area descriptors for every solvent and solute. By integrating molecular properties and chemical interaction features, we have analyzed individual descriptor importance and optimized our model though explanatory information form feature groups. On aqueous and organic solvent databases, ML models revealed the predictive relevance of solutes with increasing polar surface area and decreasing polarizability, yielding better results than state-of-the-art benchmark Neural Network methods (without complex quantum mechanical or molecular dynamic simulations). Both algorithms successfully outperformed previous Δ predictions methods, with a maximum absolute error of 0.22 ± 0.02 kcal mol, further validated in an external benchmark database and with solvent hold-out tests. With these explanatory and statistical insights, they allow a thoughtful application of this method for predicting other thermodynamic properties, stressing the relevance of ML modeling for further complex computational chemistry problems.
尽管机器学习 (ML) 方法在预测溶剂化自由能 (Δ) 方面取得了优于传统量子力学模型的最新进展,但在具有可接受的速度-准确性权衡的广泛化学预测方面,仍存在一些解释性问题。为了解决这个问题,我们提出了一种新的监督机器学习模型,用于预测一系列溶剂-溶质对的 Δ。我们使用两种不同的集成回归算法,使用开源化学特征快速准确地预测属性,为每个溶剂和溶质编码复杂的电子、结构和表面积描述符。通过整合分子特性和化学相互作用特性,我们分析了各个描述符的重要性,并通过特征组的解释信息对模型进行了优化。在水相和有机相数据库上,ML 模型揭示了具有增加的极性表面积和降低的极化率的溶质的预测相关性,其结果优于最先进的基准神经网络方法(无需复杂的量子力学或分子动力学模拟)。这两种算法都成功地超越了之前的 Δ 预测方法,最大绝对误差为 0.22 ± 0.02 kcal mol,在外部基准数据库和溶剂保留测试中得到了进一步验证。这些解释性和统计性的见解允许对该方法进行深思熟虑的应用,以预测其他热力学性质,强调了 ML 建模在解决进一步复杂的计算化学问题中的相关性。