Suppr超能文献

质子速度快且聪明;蛋白质速度慢且愚笨:关于电喷雾电离荷态与构象的关系。

Protons Are Fast and Smart; Proteins Are Slow and Dumb: On the Relationship of Electrospray Ionization Charge States and Conformations.

机构信息

Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.

Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

出版信息

J Am Soc Mass Spectrom. 2021 Jul 7;32(7):1553-1561. doi: 10.1021/jasms.1c00100. Epub 2021 Jun 21.

Abstract

We present simple considerations of how differences in time scales of motions of protons, the lightest and fastest chemical moiety, and the much longer time scales associated with the dynamics of proteins, among the heaviest and slowest analytes, may allow many protein conformations from solution to be kinetically trapped during the process of electrospraying protein solutions into the gas phase. In solution, the quantum nature of protons leads them to change locations by tunneling, an instantaneous process; moreover, the Grotthuss mechanism suggests that these small particles can respond nearly instantaneously to the dynamic motions of proteins that occur on much longer time scales. A conformational change is accompanied by favorable or unfavorable variations in the free energy of the system, providing the impetus for solvent ↔ protein proton exchange. Thus, as thermal distributions of protein conformations interconvert, protonation states rapidly respond, as specific acidic and basic sites are exposed or protected. In the vacuum of the mass spectrometer, protons become immobilized in locations that are specific to the protein conformations from which they were incorporated. In this way, conformational states from solution are preserved upon electrospraying them into the gas phase. These ideas are consistent with the exquisite sensitivity of electrospray mass spectra to small changes of the local environment that alter protein structure in solution. We might remember this approximation for the protonation of proteins in solution with the colloquial expression-.

摘要

我们提出了一些简单的考虑因素,说明质子、最轻和最快的化学部分的运动时间尺度与蛋白质动力学相关的更长时间尺度之间的差异如何可能允许在将蛋白质溶液电喷雾到气相的过程中,从溶液中动力学捕获许多蛋白质构象。在溶液中,质子的量子性质导致它们通过隧道(瞬时过程)改变位置;此外,Grotthuss 机制表明,这些小颗粒可以对发生在更长时间尺度上的蛋白质动态运动几乎即时做出响应。构象变化伴随着系统自由能的有利或不利变化,为溶剂↔蛋白质质子交换提供了动力。因此,随着蛋白质构象的热分布相互转换,质子化状态迅速响应,因为特定的酸性和碱性位点被暴露或保护。在质谱仪的真空中,质子在特定的蛋白质构象中被固定在特定的位置,这些构象是它们所包含的。通过这种方式,在将它们电喷雾到气相时,溶液中的构象状态得以保留。这些想法与电喷雾质谱对改变溶液中蛋白质结构的局部环境微小变化的极高灵敏度一致。我们可以用通俗的表达来记住这个在溶液中蛋白质质子化的近似值——“质子化就像跳舞一样”。

相似文献

1
Protons Are Fast and Smart; Proteins Are Slow and Dumb: On the Relationship of Electrospray Ionization Charge States and Conformations.
J Am Soc Mass Spectrom. 2021 Jul 7;32(7):1553-1561. doi: 10.1021/jasms.1c00100. Epub 2021 Jun 21.
2
A minimalist model for exploring conformational effects on the electrospray charge state distribution of proteins.
J Phys Chem B. 2007 Jun 14;111(23):6534-43. doi: 10.1021/jp070720t. Epub 2007 May 19.
3
Charging of Proteins in Native Mass Spectrometry.
J Am Soc Mass Spectrom. 2017 Feb;28(2):332-340. doi: 10.1007/s13361-016-1517-7. Epub 2016 Oct 12.
4
Molecular Dynamics Simulations of Native Protein Charging via Proton Transfer during Electrospray Ionization with Grotthuss Diffuse HO.
Anal Chem. 2024 Mar 12;96(10):4146-4153. doi: 10.1021/acs.analchem.3c05089. Epub 2024 Mar 1.
5
Conformational and noncovalent complexation changes in proteins during electrospray ionization.
Anal Chem. 2008 Jan 15;80(2):387-95. doi: 10.1021/ac0714359. Epub 2007 Dec 15.
6
Vapor treatment of electrospray droplets: evidence for the folding of initially denatured proteins on the sub-millisecond time-scale.
J Am Soc Mass Spectrom. 2012 Jan;23(1):88-101. doi: 10.1007/s13361-011-0258-x. Epub 2011 Oct 21.
10
Proton Dynamics in Protein Mass Spectrometry.
J Phys Chem Lett. 2017 Mar 16;8(6):1105-1112. doi: 10.1021/acs.jpclett.7b00127. Epub 2017 Feb 22.

引用本文的文献

1
Allostery without Conformational Change: A Native Mass Spectrometry Perspective.
J Phys Chem B. 2025 Aug 28;129(34):8668-8679. doi: 10.1021/acs.jpcb.5c03261. Epub 2025 Aug 19.
2
Molecular Dynamics Simulations of Native Protein Charging via Proton Transfer during Electrospray Ionization with Grotthuss Diffuse HO.
Anal Chem. 2024 Mar 12;96(10):4146-4153. doi: 10.1021/acs.analchem.3c05089. Epub 2024 Mar 1.
3
Variation of CI-2 Conformers upon Addition of Methanol to Water: An IMS-MS-Based Thermodynamic Analysis.
J Phys Chem A. 2023 Nov 16;127(45):9399-9408. doi: 10.1021/acs.jpca.3c03651. Epub 2023 Nov 7.
4
Resolving Hidden Solution Conformations of Hemoglobin Using IMS-IMS on a Cyclic Instrument.
J Am Soc Mass Spectrom. 2023 Aug 2;34(8):1559-1568. doi: 10.1021/jasms.3c00032. Epub 2023 Jul 7.
5
Stability of 20S Proteasome Configurations: Preopening the Axial Gate.
J Phys Chem Lett. 2023 Jun 1;14(21):5014-5017. doi: 10.1021/acs.jpclett.3c01040. Epub 2023 May 24.
6
Rehydration Post-orientation: Investigating Field-Induced Structural Changes via Computational Rehydration.
Protein J. 2023 Jun;42(3):205-218. doi: 10.1007/s10930-023-10110-y. Epub 2023 Apr 8.
7
Dissecting the structural heterogeneity of proteins by native mass spectrometry.
Protein Sci. 2023 Apr;32(4):e4612. doi: 10.1002/pro.4612.
9
Investigation of Charge-State-Dependent Compaction of Protein Ions with Native Ion Mobility-Mass Spectrometry and Theory.
J Am Soc Mass Spectrom. 2022 Feb 2;33(2):369-381. doi: 10.1021/jasms.1c00351. Epub 2022 Jan 24.
10
Variable-Temperature Native Mass Spectrometry for Studies of Protein Folding, Stabilities, Assembly, and Molecular Interactions.
Annu Rev Biophys. 2022 May 9;51:63-77. doi: 10.1146/annurev-biophys-102221-101121. Epub 2021 Dec 21.

本文引用的文献

4
Tracking the Structural Evolution of 4-Aminobenzoic Acid in the Transition from Solution to the Gas Phase.
J Phys Chem B. 2020 Mar 19;124(11):2081-2087. doi: 10.1021/acs.jpcb.9b10576. Epub 2020 Mar 6.
6
Variable-Temperature ESI-IMS-MS Analysis of Myohemerythrin Reveals Ligand Losses, Unfolding, and a Non-Native Disulfide Bond.
Anal Chem. 2019 May 21;91(10):6808-6814. doi: 10.1021/acs.analchem.9b00981. Epub 2019 May 9.
7
Native Ion Mobility Mass Spectrometry: When Gas-Phase Ion Structures Depend on the Electrospray Charging Process.
J Am Soc Mass Spectrom. 2019 Jun;30(6):1069-1081. doi: 10.1007/s13361-019-02152-3. Epub 2019 Mar 28.
8
Effect of droplet lifetime on where ions are formed in electrospray ionization.
Analyst. 2018 Dec 17;144(1):237-248. doi: 10.1039/c8an01824c.
9
Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum.
Phys Chem Chem Phys. 2018 Nov 21;20(45):28435-28444. doi: 10.1039/c8cp05955a.
10
Characterizing the Conformationome: Toward a Structural Understanding of the Proteome.
Acc Chem Res. 2017 Mar 21;50(3):556-560. doi: 10.1021/acs.accounts.6b00548.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验