Suppr超能文献

任意轮廓刚性的离散高斯半柔性链的详细动力学。

Detailed dynamics of discrete Gaussian semiflexible chains with arbitrary stiffness along the contour.

机构信息

Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.

Faculty of Physics, Department of Theoretical Physics, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid, 28040 Madrid, Spain.

出版信息

J Chem Phys. 2022 Oct 28;157(16):164904. doi: 10.1063/5.0112951.

Abstract

We revisit a model of semiflexible Gaussian chains proposed by Winkler et al., solve the dynamics of the discrete description of the model, and derive exact algebraic expressions for some of the most relevant dynamical observables, such as the mean-square displacement of individual monomers, the dynamic structure factor, the end-to-end vector relaxation, and the shear stress relaxation modulus. The mathematical expressions for the dynamic structure factor are verified by comparing them with results from Brownian dynamics simulations, reporting an excellent agreement. Then, we generalize the model to linear polymer chains with arbitrary stiffness. In particular, we focus on the case of a linear polymer with stiffness that changes linearly from one end of the chain to the other, and we study the same dynamical functions previously presented. We discuss different approaches to check whether a polymer has constant or heterogeneous stiffness along its contour. Finally, we provide expressions for the Lagrangian multipliers for Gaussian chains with variable stiffness and bond length, as well as for chains with torsion-like interactions. Overall, this work presents a new insight into a well-known model for semiflexible chains and provides tools that can be exploited to explore a much broader class of polymers or compare the predictions of the model with simulations of coarse-grained semiflexible polymers.

摘要

我们重新研究了 Winkler 等人提出的半柔性高斯链模型,求解了模型的离散描述的动力学,并推导出了一些最相关的动态观测值的精确代数表达式,例如单个单体的均方位移、动态结构因子、末端向量松弛和剪切应力松弛模量。通过将动态结构因子的数学表达式与布朗动力学模拟的结果进行比较,验证了它们的正确性,报告了非常好的一致性。然后,我们将该模型推广到具有任意刚度的线性聚合物链。特别地,我们关注的是具有从链的一端到另一端线性变化的刚度的线性聚合物的情况,并研究了前面提出的相同的动态函数。我们讨论了不同的方法来检查聚合物的轮廓是否具有恒定或不均匀的刚度。最后,我们为具有可变刚度和键长的高斯链以及具有扭转相互作用的链提供了拉格朗日乘子的表达式。总的来说,这项工作为半柔性链的一个著名模型提供了新的见解,并提供了可以用来探索更广泛的聚合物类别的工具,或者将模型的预测与粗粒化半柔性聚合物的模拟进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验