Park Junsu, Ueda Tomoya, Kawai Yusaku, Araki Kumiko, Kido Makiko, Kure Bunsho, Takenaka Naomi, Takashima Yoshinori, Tanaka Masaru
Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan.
Forefront Research Center, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan.
RSC Adv. 2022 Sep 30;12(43):27912-27917. doi: 10.1039/d2ra04885j. eCollection 2022 Sep 28.
The demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular cross-links based on inclusion complexation of acetylated cyclodextrin. The mechanical properties, such as Young's modulus and toughness, of these pMEA-based elastomers change with the amount of cross-links, maintaining tissue-like behavior (J-shaped stress-strain curve). Regardless of the cross-links, the pMEA-based elastomers exhibit low platelet adhesion properties (approximately 3% platelet adherence) compared with those of poly(ethylene terephthalate), which is one of the commercialized materials for artificial blood vessels. Contact angle measurements imply a shift of supramolecular cross-links in response to the surrounding environment. When immersed in water, hydrophobic supramolecular cross-links are buried within the interior of the materials, thereby exposing pMEA chains to the aqueous environment; this is why supramolecular cross-links do not affect the platelet adhesion properties. In addition, the elastomers exhibit stable adhesion to human umbilical vein endothelial cells. This report shows the potential of combining supramolecular cross-links and pMEA.
未来,治疗血管疾病所需的人造血管需求将持续增长。为了扩大血液相容性聚(丙烯酸2-甲氧基乙酯)(pMEA)在人造血管中的应用,基于乙酰化环糊精的包合络合作用,利用超分子交联来控制pMEA的机械性能。这些基于pMEA的弹性体的机械性能,如杨氏模量和韧性,会随着交联量的变化而改变,保持类似组织的行为(J形应力-应变曲线)。无论交联情况如何,与作为人造血管商业化材料之一的聚对苯二甲酸乙二酯相比,基于pMEA的弹性体表现出较低的血小板粘附性能(约3%的血小板粘附率)。接触角测量表明超分子交联会因周围环境而发生变化。当浸入水中时,疏水性超分子交联会被埋入材料内部,从而使pMEA链暴露于水环境中;这就是超分子交联不影响血小板粘附性能的原因。此外,这些弹性体对人脐静脉内皮细胞表现出稳定的粘附性。本报告展示了超分子交联与pMEA相结合的潜力。