Suppr超能文献

新型冠状病毒肺炎患者的m7G修饰水平及免疫浸润特征

The m7G Modification Level and Immune Infiltration Characteristics in Patients with COVID-19.

作者信息

Lu Lingling, Zheng Jiaolong, Liu Bang, Wu Haicong, Huang Jiaofeng, Wu Liqing, Li Dongliang

机构信息

Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People's Republic of China.

Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China.

出版信息

J Multidiscip Healthc. 2022 Oct 26;15:2461-2472. doi: 10.2147/JMDH.S385050. eCollection 2022.

Abstract

PURPOSE

The 7-methylguanosine (m7G)-related genes were used to identify the clinical severity and prognosis of patients with coronavirus disease 2019 (COVID-19) and to identify possible therapeutic targets.

PATIENTS AND METHODS

The GSE157103 dataset provides the transcriptional spectrum and clinical information required to analyze the expression of m7G-related genes and the disease subtypes. R language was applied for immune infiltration analysis, functional enrichment analysis, and nomogram model construction.

RESULTS

Most m7G-related genes were up-regulated in COVID-19 and were closely related to immune cell infiltration. Disease subtypes were grouped using a clustering algorithm. It was found that the m7G-cluster B was associated with higher immune infiltration, lower mechanical ventilation, lower intensive care unit (ICU) status, higher ventilator-free days, and lower m7G scores. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed genes (DEGs) between m7G-cluster A and B were enriched in viral infection and immune-related aspects, including COVID-19 infection; Th17, Th1, and Th2 cell differentiation, and human T-cell leukemia virus 1 infection. Finally, through machine learning, six disease characteristic genes, NUDT4B, IFIT5, LARP1, EIF4E, LSM1, and NUDT4, were screened and used to develop a nomogram model to estimate disease risk.

CONCLUSION

The expression of most m7G genes was higher in COVID-19 patients compared with that in non-COVID-19 patients. The m7G-cluster B showed higher immune infiltration and milder symptoms. The predictive nomogram based on the six m7G genes can be used to accurately assess risk.

摘要

目的

利用7-甲基鸟苷(m7G)相关基因来确定2019冠状病毒病(COVID-19)患者的临床严重程度和预后,并确定可能的治疗靶点。

患者和方法

GSE157103数据集提供了分析m7G相关基因表达和疾病亚型所需的转录谱和临床信息。应用R语言进行免疫浸润分析、功能富集分析和列线图模型构建。

结果

大多数m7G相关基因在COVID-19中上调,且与免疫细胞浸润密切相关。使用聚类算法对疾病亚型进行分组。发现m7G聚类B与更高的免疫浸润、更低的机械通气、更低的重症监护病房(ICU)状态、更长的无呼吸机天数和更低的m7G评分相关。京都基因与基因组百科全书(KEGG)分析表明,m7G聚类A和B之间的差异表达基因(DEG)在病毒感染和免疫相关方面富集,包括COVID-19感染;Th17、Th1和Th2细胞分化,以及人类T细胞白血病病毒1感染。最后,通过机器学习,筛选出六个疾病特征基因NUDT4B、IFIT5、LARP1、EIF4E、LSMI和NUDT4,并用于开发列线图模型以估计疾病风险。

结论

与非COVID-19患者相比,COVID-19患者中大多数m7G基因的表达更高。m7G聚类B显示出更高的免疫浸润和更轻的症状。基于六个m7G基因的预测列线图可用于准确评估风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a1/9618243/8b4796d87e7b/JMDH-15-2461-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验