Kim Minjun, Firestein Konstantin L, Fernando Joseph F S, Xu Xingtao, Lim Hyunsoo, Golberg Dmitri V, Na Jongbeom, Kim Jihyun, Nara Hiroki, Tang Jing, Yamauchi Yusuke
Australian Institute for Bioengineering and Nanotechnology (AIBN), School of Chemical Engineering, The University of Queensland Brisbane Queensland 4072 Australia
Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane Queensland 4000 Australia.
Chem Sci. 2022 Sep 1;13(36):10836-10845. doi: 10.1039/d2sc02726g. eCollection 2022 Sep 21.
In this study, we present microporous carbon (MPC), hollow microporous carbon (HMC) and hierarchically porous carbon (HPC) to demonstrate the importance of strategical designing of nanoarchitectures in achieving advanced catalyst (or electrode) materials, especially in the context of oxygen reduction reaction (ORR). Based on the electrochemical impedance spectroscopy and ORR studies, we identify a marked structural effect depending on the porosity. Specifically, mesopores are found to have the most profound influence by significantly improving electrochemical wettability and accessibility. We also identify that macropore contributes to the rate capability of the porous carbons. The results of the rotating ring disk electrode (RRDE) method also demonstrate the advantages of strategically designed double-shelled nanoarchitecture of HPC to increase the overall electron transfer number () closer to four by offering a higher chance of the double two-electron pathways. Next, selective doping of highly active Fe-N sites on HPC is obtained by increasing the nitrogen content in HPC. As a result, the optimized Fe and N co-doped HPC demonstrate high ORR catalytic activity comparable to the commercial 20 wt% Pt/C in alkaline electrolyte. Our findings, therefore, strongly advocate the importance of a strategic design of advanced catalyst (or electrode) materials, especially in light of both structural and doping effects, from the perspective of nanoarchitectonics.
在本研究中,我们展示了微孔碳(MPC)、中空微孔碳(HMC)和分级多孔碳(HPC),以证明纳米结构的策略性设计在实现先进催化剂(或电极)材料方面的重要性,特别是在氧还原反应(ORR)的背景下。基于电化学阻抗谱和ORR研究,我们确定了一种取决于孔隙率的显著结构效应。具体而言,发现中孔通过显著改善电化学润湿性和可及性具有最深远的影响。我们还确定大孔有助于提高多孔碳的倍率性能。旋转环盘电极(RRDE)方法的结果也证明了HPC策略性设计的双壳纳米结构的优势,即通过提供更高的双二电子途径机会,使总电子转移数()更接近4。接下来,通过增加HPC中的氮含量,在HPC上实现了高活性Fe-N位点的选择性掺杂。结果,优化后的Fe和N共掺杂HPC在碱性电解质中表现出与商业20 wt% Pt/C相当的高ORR催化活性。因此,我们的研究结果强烈支持先进催化剂(或电极)材料策略性设计的重要性,特别是从纳米建筑学的角度来看,考虑到结构和掺杂效应。