Suppr超能文献

通过金属有机框架热剥离制备的富含缺陷的石墨烯纳米网用于氧还原反应

Defect-Rich Graphene Nanomesh Produced by Thermal Exfoliation of Metal-Organic Frameworks for the Oxygen Reduction Reaction.

作者信息

Xia Wei, Tang Jing, Li Jingjing, Zhang Shuaihua, Wu Kevin C-W, He Jianping, Yamauchi Yusuke

机构信息

College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China.

International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

出版信息

Angew Chem Int Ed Engl. 2019 Sep 16;58(38):13354-13359. doi: 10.1002/anie.201906870. Epub 2019 Aug 13.

Abstract

Although graphene nanomesh is an attractive 2D carbon material, general synthetic routes to produce functional graphene nanomesh in large-scale are complex and tedious. Herein, we elaborately design a simple two-step dimensional reduction strategy for exploring nitrogen-doped graphene nanomesh by thermal exfoliation of crystal- and shape-modified metal-organic frameworks (MOFs). MOF nanoleaves with 2D rather than 3D crystal structure are used as the precursor, which are further thermally unraveled into nitrogen-doped graphene nanomesh by using metal chlorides as the exfoliators and etching agent. The nitrogen-doped graphene nanomesh has a unique ultrathin two-dimensional morphology, high porosity, rich and accessible nitrogen-doped active sites, and defective graphene edges, contributing to an unprecedented catalytic activity for the oxygen reduction reaction (ORR) in acid electrolytes. This approach is suitable for scalable production.

摘要

尽管石墨烯纳米网是一种有吸引力的二维碳材料,但大规模制备功能化石墨烯纳米网的常规合成路线复杂且繁琐。在此,我们精心设计了一种简单的两步还原策略,通过对晶体和形状改性的金属有机框架(MOF)进行热剥离来探索氮掺杂石墨烯纳米网。具有二维而非三维晶体结构的MOF纳米片用作前驱体,通过使用金属氯化物作为剥离剂和蚀刻剂,将其进一步热解缠为氮掺杂石墨烯纳米网。氮掺杂石墨烯纳米网具有独特的超薄二维形态、高孔隙率、丰富且易于接近的氮掺杂活性位点以及有缺陷的石墨烯边缘,这使其在酸性电解质中对氧还原反应(ORR)具有前所未有的催化活性。这种方法适用于规模化生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验