Messaoudi Yazid, Belhadj Hamza, Khelladi Mohamed R, Azizi Amor
Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures, Université Ferhat Abbas Sétif 1 Sétif 19000 Algeria.
Unit of Research in Nanosciences and Nanotechnologies (URNN), Center for Development of Advanced Technologies (CDTA), Université Ferhat Abbas Sétif 1 Sétif 19000 Algeria
RSC Adv. 2022 Oct 12;12(45):29143-29150. doi: 10.1039/d2ra05922c. eCollection 2022 Oct 11.
Developing and designing high-performance and stable NiFe electrodes for efficient hydrogen production are the greatest challenges in electrochemical water splitting. In this work, NiFe alloys with different Ni and Fe contents are prepared by a simple electrodeposition method using different molar ratios of Ni/Fe precursors (Ni/Fe; 1 : 3, 1 : 1 and 3 : 1). The obtained NiFe electrode with a molar ratio of 3 : 1 exhibited better electrocatalytic activity for the HER than the other NiFe electrodes with 1 : 3 and 1 : 1 molar ratios. The NiFe (Ni/Fe, 3 : 1) electrode required an overpotential of 133 mV to reach a current density of 10 mA cm, which was much lower than those of NiFe with molar ratio of 1 : 3 (220 mV), and 1 : 1 (365 mV), respectively. Tafel slope analyses demonstrated that the HER mechanism of NiFe alloy coatings followed the Volmer reaction type. The superior electrocatalytic performance of the NiFe alloy for HER depending on precursor molar ratio of Ni/Fe was attributed to their composition in terms of Ni and Fe content, structure and surface morphology. Specifically, the electrodeposition of the NiFe alloy was obtained in a molar ratio Ni/Fe, 3 : 1, and induced the formation of NiFe layered double hydroxide (LDH) with a nanosheet-array structure. The high electrocatalytic activity of NiFe LDH (Ni/Fe, 3 : 1) confirmed the critical influence of Ni and Fe contents in the alloy resulting in an increase the active surface on the surfaces, which is most likely explained by the higher surface roughness and the low crystallinity structure of NiFe nanosheet-array, supported by ECSA measurement, XRD, SEM and AFM analyses. The present strategy may open an avenue for developing cost-effective, stable and high-performance electrocatalysts as advanced electrodes for large-scale water splitting.
开发和设计用于高效制氢的高性能且稳定的镍铁电极是电化学水分解领域面临的最大挑战。在本工作中,通过简单的电沉积方法,使用不同摩尔比的镍/铁前驱体(镍/铁;1∶3、1∶1和3∶1)制备了具有不同镍和铁含量的镍铁合金。与其他摩尔比为1∶3和1∶1的镍铁电极相比,摩尔比为3∶1的所得镍铁电极对析氢反应表现出更好的电催化活性。镍铁(镍/铁,3∶1)电极达到10 mA cm的电流密度需要133 mV的过电位,这分别远低于摩尔比为1∶3(220 mV)和1∶1(365 mV)的镍铁电极。塔菲尔斜率分析表明,镍铁合金涂层的析氢反应机理遵循沃尔默反应类型。镍铁合金对析氢反应的优异电催化性能取决于镍/铁前驱体摩尔比,这归因于其镍和铁含量、结构及表面形貌方面的组成。具体而言,以镍/铁摩尔比3∶1电沉积得到镍铁合金,并诱导形成具有纳米片阵列结构的镍铁层状双氢氧化物(LDH)。镍铁LDH(镍/铁,3∶1)的高电催化活性证实了合金中镍和铁含量的关键影响,导致表面活性表面积增加,这很可能由镍铁纳米片阵列较高的表面粗糙度和低结晶度结构所解释,这得到了电化学活性表面积测量、X射线衍射、扫描电子显微镜和原子力显微镜分析的支持。本策略可能为开发具有成本效益、稳定且高性能的电催化剂作为大规模水分解的先进电极开辟一条途径。