Kumar Anuj, Ta Sabyasachi, Nettem Chandrasekhar, Tanski Joseph M, Rajaraman Gopalan, Ghosh Prasenjit
Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400 076 India
Department of Chemistry, Vassar College 124 Raymond Avenue Poughkeepsie NY 12604 USA
RSC Adv. 2022 Oct 13;12(45):28961-28984. doi: 10.1039/d2ra05531g. eCollection 2022 Oct 11.
One-pot tandem dehydrogenative cross-coupling of primary and secondary alcohols was catalyzed by three ruthenium complexes [1-()-4--(furan-2-ylmethyl)acetamido-1,2,4-triazol-5-ylidene]Ru(-cymene)Cl [R = Et (1b), i-Pr (2b), Bn (3b)], of amido-functionalized 1,2,4-triazole derived N-heterocyclic carbene (NHC) ligands. Density Functional Theory (DFT) calculations were employed for the ruthenium (1b) precatalyst to understand this reaction mechanism completely, and the mechanisms adapted are divided categorically into three steps (i) nucleophilic substitution of chloride ions by alcohols, (ii) dehydrogenation of primary and secondary alcohols, and (iii) olefin and ketone hydrogenation. Our mechanistic study reveals that the formation of a deprotonated Ru-alcoholate (A) or (E) intermediate is favorable compared to the protonated form (A') or (E') from (1b) by associative nucleophilic substitution. Though an ionic pathway that proceeds through (A') or (E'), has less barriers in the dehydrogenation and olefin/ketone hydrogenation steps than that of the neutral pathway, proceeding through (A) or (E), a steep energy barrier was observed in the first nucleophilic substitution step, prohibiting the reaction to proceed the intermediate (A') or (E'). Thus, our thorough mechanistic study reveals that the reaction proceeds deprotonated Ru-alcoholate (A) or (E) species. Furthermore, the 1,4 addition of an α,β-unsaturated carbonyl compound is kinetically and thermodynamically favorable over the 1,2 addition, and the experiments support these observations. As a testimony towards practical application in synthesizing bio-active flavonoid based natural products, five different flavan derivatives (16-20), were synthesized by the dehydrogenative coupling reaction using the neutral ruthenium (1-3)b complexes.
三种钌配合物[1-()-4--(呋喃-2-基甲基)乙酰胺基-1,2,4-三唑-5-亚基]Ru(-异丙苯)Cl [R = 乙基 (1b)、异丙基 (2b)、苄基 (3b)] 催化了伯醇和仲醇的一锅串联脱氢交叉偶联反应,这些配合物由酰胺官能化的1,2,4-三唑衍生的N-杂环卡宾 (NHC) 配体构成。采用密度泛函理论 (DFT) 计算对钌 (1b) 预催化剂进行研究,以全面了解该反应机理,所采用的机理明确分为三个步骤:(i) 醇对氯离子的亲核取代;(ii) 伯醇和仲醇的脱氢反应;(iii) 烯烃和酮的氢化反应。我们的机理研究表明,通过缔合亲核取代反应,与 (1b) 的质子化形式 (A') 或 (E') 相比,去质子化的钌醇盐 (A) 或 (E) 中间体的形成更为有利。尽管通过 (A') 或 (E') 进行的离子途径在脱氢和烯烃/酮氢化步骤中的势垒比通过 (A) 或 (E) 的中性途径更低,但在第一个亲核取代步骤中观察到了一个陡峭的能垒,这阻止了反应通过中间体 (A') 或 (E') 进行。因此,我们深入的机理研究表明,反应是通过去质子化的钌醇盐 (A) 或 (E) 物种进行的。此外,α,β-不饱和羰基化合物的1,4加成在动力学和热力学上比1,2加成更有利,实验结果支持了这些观察结果。作为在合成基于生物活性黄酮类天然产物方面实际应用的一个例证,使用中性钌 (1-3)b 配合物通过脱氢偶联反应合成了五种不同的黄烷衍生物 (16-20)。