Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697.
Department of Chemistry, University of California, Irvine, CA 92697.
Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2213911119. doi: 10.1073/pnas.2213911119. Epub 2022 Nov 2.
For sustained vision, photoactivated rhodopsin (Rho*) must undergo hydrolysis and release of all--retinal, producing substrate for the visual cycle and apo-opsin available for regeneration with 11--retinal. The kinetics of this hydrolysis has yet to be described for rhodopsin in its native membrane environment. We developed a method consisting of simultaneous denaturation and chromophore trapping by isopropanol/borohydride, followed by exhaustive protein digestion, complete extraction, and liquid chromatography-mass spectrometry. Using our method, we tracked Rho* hydrolysis, the subsequent formation of -retinylidene-phosphatidylethanolamine (-ret-PE) adducts with the released all--retinal, and the reduction of all--retinal to all--retinol. We found that hydrolysis occurred faster in native membranes than in detergent micelles typically used to study membrane proteins. The activation energy of the hydrolysis in native membranes was determined to be 17.7 ± 2.4 kcal/mol. Our data support the interpretation that metarhodopsin II, the signaling state of rhodopsin, is the primary species undergoing hydrolysis and release of its all--retinal. In the absence of NADPH, free all--retinal reacts with phosphatidylethanolamine (PE), forming a substantial amount of -ret-PE (∼40% of total all--retinal at physiological pH), at a rate that is an order of magnitude faster than Rho* hydrolysis. However, -ret-PE formation was highly attenuated by NADPH-dependent reduction of all--retinal to all--retinol. Neither -ret-PE formation nor all--retinal reduction affected the rate of hydrolysis of Rho*. Our study provides a comprehensive picture of the hydrolysis of Rho* and the release of all--retinal and its reentry into the visual cycle, a process in which alteration can lead to severe retinopathies.
为了持续的视觉,光激活视蛋白(Rho*)必须经历水解,释放出所有的视黄醛,为视觉循环提供底物,并为 11-视黄醛再生提供脱辅基视蛋白。这种水解的动力学尚未在视蛋白的天然膜环境中描述。我们开发了一种方法,包括异丙醇/硼氢化钠的同时变性和发色团捕获,然后进行彻底的蛋白质消化、完全提取和液相色谱-质谱分析。使用我们的方法,我们跟踪了 Rho水解,随后释放的所有视黄醛与 -视黄醛-磷酸乙醇胺(-ret-PE)加合物的形成,以及所有视黄醛向全反式视黄醇的还原。我们发现,在天然膜中,水解比通常用于研究膜蛋白的去污剂胶束更快。在天然膜中,水解的活化能被确定为 17.7±2.4 kcal/mol。我们的数据支持这样的解释,即视蛋白的信号状态——变视蛋白 II,是主要经历水解和释放其所有视黄醛的物质。在没有 NADPH 的情况下,游离的全反式视黄醛与磷酸乙醇胺(PE)反应,形成大量的 -ret-PE(在生理 pH 下约占总全反式视黄醛的 40%),其反应速率比 Rho水解快一个数量级。然而,-ret-PE 的形成被 NADPH 依赖的全反式视黄醇还原为全反式视黄醛而大大减弱。-ret-PE 的形成和全反式视黄醛的还原都不会影响 Rho水解的速率。我们的研究提供了 Rho水解和全反式视黄醛释放及其重新进入视觉循环的全面图景,这一过程的改变可能导致严重的视网膜病变。