Suppr超能文献

使用回归、地理空间和遥感技术估算孟加拉国兰普尔的固体废物产生量和垃圾填埋场适用性分析。

Estimating solid waste generation and suitability analysis of landfill sites using regression, geospatial, and remote sensing techniques in Rangpur, Bangladesh.

机构信息

Department of Urban & Regional Planning, Rajshahi University of Engineering & Technology, Rajshahi, 6203, Bangladesh.

Department of Geography & the Environment, The University of Texas at Austin, 1 University Station A3100, TX, Austin, 78712, USA.

出版信息

Environ Monit Assess. 2022 Nov 3;195(1):54. doi: 10.1007/s10661-022-10695-4.

Abstract

Municipal solid waste (MSW) management has been a growing problem in fast-developing cities. A considerable amount of solid waste is generated daily and disposed anywhere, which creates an unhealthy environment. This study aims to develop a model to determine household solid waste (HSW) generation using multiple linear regression and identify suitable landfill sites to ensure proper MSW disposal in Rangpur City, Bangladesh. Socioeconomic variables data like average monthly income, educational level, family size, age of family head, and average HSW generation per day were collected from 381 respondents through stratified random sampling with a 95% confidence level. Multi-criteria decision analysis (MCDA) was performed using variables like surface water, slope, road network, and land use through GIS and remote sensing to find suitable landfill sites. Results of the model show no multicollinearity as the variance inflation factor was estimated to be less than 2 for each independent variable. Furthermore, the model provides a moderate overall fit because of the coefficient of determination (R = 0.661), which denotes the independent variables' predictive capability. The results also demonstrate that family size and education are the most critical variables in predicting waste generation because of the values of coefficients 122.39 and - 184.72, respectively. This study also illustrated suitable landfill sites through MCDA, which can be a useful resource for the city authority to ensure environmental sustainability by implementing effective strategies for proper MSW management.

摘要

城市生活垃圾(MSW)管理在快速发展的城市中是一个日益严重的问题。每天都会产生大量的固体废物,并且随意丢弃,这造成了不健康的环境。本研究旨在开发一个模型,使用多元线性回归来确定家庭固体废物(HSW)的产生,并确定合适的垃圾填埋场,以确保在孟加拉国兰普尔市妥善处理城市固体废物。通过分层随机抽样,在 95%的置信水平下,从 381 名受访者那里收集了平均月收入、教育水平、家庭规模、家庭负责人年龄和平均每日 HSW 产生量等社会经济变量数据。通过 GIS 和遥感对地表水、坡度、道路网络和土地利用等变量进行多准则决策分析(MCDA),以找到合适的垃圾填埋场。模型结果表明不存在多重共线性,因为每个自变量的方差膨胀因子估计都小于 2。此外,由于决定系数(R=0.661),该模型提供了中等的整体拟合度,这表示自变量的预测能力。结果还表明,家庭规模和教育是预测废物产生的最重要变量,因为系数分别为 122.39 和-184.72。本研究还通过 MCDA 说明了合适的垃圾填埋场位置,这可以为城市当局提供有用的资源,通过实施有效的城市固体废物管理策略,实现环境可持续性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验