Suppr超能文献

机器学习与遥感技术耦合用于孟加拉国沿海地区土壤盐分制图

Coupling of machine learning and remote sensing for soil salinity mapping in coastal area of Bangladesh.

作者信息

Sarkar Showmitra Kumar, Rudra Rhyme Rubayet, Sohan Abid Reza, Das Palash Chandra, Ekram Khondaker Mohammed Mohiuddin, Talukdar Swapan, Rahman Atiqur, Alam Edris, Islam Md Kamrul, Islam Abu Reza Md Towfiqul

机构信息

Department of Urban and Regional Planning, Khulna University of Engineering & Technology (KUET), Khulna, 9203, Bangladesh.

Department of Geography, Texas A&M University, College Station, USA.

出版信息

Sci Rep. 2023 Oct 10;13(1):17056. doi: 10.1038/s41598-023-44132-4.

Abstract

Soil salinity is a pressing issue for sustainable food security in coastal regions. However, the coupling of machine learning and remote sensing was seldom employed for soil salinity mapping in the coastal areas of Bangladesh. The research aims to estimate the soil salinity level in a southwestern coastal region of Bangladesh. Using the Landsat OLI images, 13 soil salinity indicators were calculated, and 241 samples of soil salinity data were collected from a secondary source. This study applied three distinct machine learning models (namely, random forest, bagging with random forest, and artificial neural network) to estimate soil salinity. The best model was subsequently used to categorize soil salinity zones into five distinct groups. According to the findings, the artificial neural network model has the highest area under the curve (0.921), indicating that it has the most potential to predict and detect soil salinity zones. The high soil salinity zone covers an area of 977.94 km or roughly 413.51% of the total study area. According to additional data, a moderate soil salinity zone (686.92 km) covers 30.56% of Satkhira, while a low soil salinity zone (582.73 km) covers 25.93% of the area. Since increased soil salinity adversely affects human health, agricultural production, etc., the study's findings will be an effective tool for policymakers in integrated coastal zone management in the southwestern coastal area of Bangladesh.

摘要

土壤盐渍化是沿海地区可持续粮食安全面临的紧迫问题。然而,机器学习与遥感的结合很少用于孟加拉国沿海地区的土壤盐渍化测绘。该研究旨在估算孟加拉国西南沿海地区的土壤盐渍化水平。利用陆地卫星OLI图像,计算了13个土壤盐渍化指标,并从二手资料中收集了241个土壤盐渍化数据样本。本研究应用了三种不同的机器学习模型(即随机森林、随机森林装袋法和人工神经网络)来估算土壤盐渍化。随后使用最佳模型将土壤盐渍化区域分为五个不同的组。根据研究结果,人工神经网络模型的曲线下面积最高(0.921),表明其在预测和检测土壤盐渍化区域方面最具潜力。高土壤盐渍化区域面积为977.94平方公里,约占研究总面积的413.51%。根据其他数据,中度土壤盐渍化区域(686.92平方公里)覆盖萨特基拉的30.56%,而低度土壤盐渍化区域(582.73平方公里)覆盖该地区的25.93%。由于土壤盐渍化加剧会对人类健康、农业生产等产生不利影响,该研究结果将成为孟加拉国西南沿海地区综合海岸带管理政策制定者的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/088d/10564761/20a50abf3e0b/41598_2023_44132_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验