文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nanoclays in medicine: a new frontier of an ancient medical practice.

作者信息

Katti Kalpana S, Jasuja Haneesh, Jaswandkar Sharad V, Mohanty Sibanwita, Katti Dinesh R

机构信息

Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA

出版信息

Mater Adv. 2022 Aug 31;3(20):7484-7500. doi: 10.1039/d2ma00528j. eCollection 2022 Oct 18.


DOI:10.1039/d2ma00528j
PMID:36324871
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9577303/
Abstract

Clays have been used as early as 2500 BC in human civilization for medicinal purposes. The ease of availability, biocompatibility, and versatility of these unique charged 2D structures abundantly available in nature have enabled the extensive applications of clays in human history. Recent advances in the use of clays in nanostructures and as components of polymer clay nanocomposites have exponentially expanded the use of clays in medicine. This review covers the details of structures and biomedical applications of several common clays, including montmorillonite, LAPONITE®, kaolinite, and halloysite. Here we describe the applications of these clays in wound dressings as hemostatic agents in drug delivery of drugs for cancer and other diseases and tissue engineering. Also reviewed are recent experimental and modeling studies that elucidate the impact of clay structures on cellular processes and cell adhesion processes. Various mechanisms of clay-mediated bioactivity, including protein localization, modulation of cell adhesion, biomineralization, and the potential of clay nanoparticles to impact cell differentiation, are presented. We also review the current developments in understanding the impact of clays on cellular responses. This review also elucidates new emerging areas of use of nanoclays in osteogenesis and the development of models of bone metastasis of cancer.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/1aeaa6e2d3c4/d2ma00528j-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/0ebc735dab4e/d2ma00528j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/a62c40f674af/d2ma00528j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/5252dce05371/d2ma00528j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/d472044aeb60/d2ma00528j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/d1588a76607d/d2ma00528j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/c5c2998ac980/d2ma00528j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/cbafd853769e/d2ma00528j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/2a03462297a7/d2ma00528j-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/77616d3d1676/d2ma00528j-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/fd1c4a32661e/d2ma00528j-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/09ea319e0d42/d2ma00528j-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/1aeaa6e2d3c4/d2ma00528j-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/0ebc735dab4e/d2ma00528j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/a62c40f674af/d2ma00528j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/5252dce05371/d2ma00528j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/d472044aeb60/d2ma00528j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/d1588a76607d/d2ma00528j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/c5c2998ac980/d2ma00528j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/cbafd853769e/d2ma00528j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/2a03462297a7/d2ma00528j-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/77616d3d1676/d2ma00528j-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/fd1c4a32661e/d2ma00528j-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/09ea319e0d42/d2ma00528j-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d37c/9577303/1aeaa6e2d3c4/d2ma00528j-f12.jpg

相似文献

[1]
Nanoclays in medicine: a new frontier of an ancient medical practice.

Mater Adv. 2022-8-31

[2]
Toxicological evaluation of clay minerals and derived nanocomposites: a review.

Environ Res. 2015-4

[3]
Structured clay minerals-based nanomaterials for sustainable photo/thermal carbon dioxide conversion to cleaner fuels: A critical review.

Sci Total Environ. 2022-11-1

[4]
Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

Biomaterials. 2018-1-3

[5]
An Evidence-Based Review on Medicinal Value of Clays in Traditional Persian Medicine.

Curr Drug Discov Technol. 2017

[6]
Nanoclay-based drug delivery systems and their therapeutic potentials.

J Mater Chem B. 2020-8-26

[7]
Clay-reinforced PVC composites and nanocomposites.

Heliyon. 2024-4-6

[8]
Clays and Wound Healing.

Materials (Basel). 2024-4-7

[9]
Natural and Synthetic Clay Minerals in the Pharmaceutical and Biomedical Fields.

Pharmaceutics. 2023-4-29

[10]
The Horizons of Medical Mineralogy: Structure-Bioactivity Relationship and Biomedical Applications of Halloysite Nanoclay.

ACS Nano. 2024-7-17

引用本文的文献

[1]
Unveiling the Potential of Nanoclays in Pharmaceuticals.

AAPS PharmSciTech. 2025-6-10

[2]
Chitosan-Clay Mineral Nanocomposites with Antibacterial Activity for Biomedical Application: Advantages and Future Perspectives.

Int J Mol Sci. 2024-9-26

[3]
Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering.

J Funct Biomater. 2024-8-23

[4]
[Not Available].

Mater Today Bio. 2023-12-28

[5]
Clay-Polymer Nanocomposites Mediated Inhibition of Protein Aggregation: Possible Role in the Prevention of Proteinopathies.

Protein Pept Lett. 2025

[6]
An Evaluation of Experimental Calcium Ion-Leachable Nanocomposite Glass Ionomer Cements.

Nanomaterials (Basel). 2023-9-30

[7]
Clay-Based Nanocomposite Hydrogels for Biomedical Applications: A Review.

Nanomaterials (Basel). 2022-9-23

本文引用的文献

[1]
A 3D bioprinted nano-laponite hydrogel construct promotes osteogenesis by activating PI3K/AKT signaling pathway.

Mater Today Bio. 2022-7-1

[2]
Nanocomposite Bioinks Based on Agarose and 2D Nanosilicates with Tunable Flow Properties and Bioactivity for 3D Bioprinting.

ACS Appl Bio Mater. 2019-2-18

[3]
Laponite-Based Nanomaterials for Drug Delivery.

Adv Healthc Mater. 2022-4

[4]
Clay Minerals as Bioink Ingredients for 3D Printing and 3D Bioprinting: Application in Tissue Engineering and Regenerative Medicine.

Pharmaceutics. 2021-10-28

[5]
Recent advances in materials for hemostatic management.

Biomater Sci. 2021-11-9

[6]
Robust hemostatic bandages based on nanoclay electrospun membranes.

Nat Commun. 2021-10-11

[7]
Surface modified halloysite nanotubes with different lumen diameters as drug carriers for cancer therapy.

Chem Commun (Camb). 2021-9-16

[8]
Application of Halloysite Nanotubes in Cancer Therapy-A Review.

Materials (Basel). 2021-5-29

[9]
Application and outlook of topical hemostatic materials: a narrative review.

Ann Transl Med. 2021-4

[10]
The role of lithium in the osteogenic bioactivity of clay nanoparticles.

Biomater Sci. 2021-4-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索