Suppr超能文献

基于纳米黏土的药物传递系统及其治疗潜力。

Nanoclay-based drug delivery systems and their therapeutic potentials.

机构信息

Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.

出版信息

J Mater Chem B. 2020 Aug 26;8(33):7335-7351. doi: 10.1039/d0tb01031f.

Abstract

Safe, therapeutically effective, and patient-compliant drug delivery systems are needed to design novel tools and strategies to combat the deadliest of diseases such as cancer, SARS, H7N9 avian influenza, and dengue infection. The major challenges in drug delivery are cytotoxicity, poor biodistribution, insufficient functionality, ineffective drug incorporation in delivery devices, and subsequent drug release. Clay minerals are a class of nanolayered silicates that have good biocompatibility, high specific surface area, chemical inertness, colloid, and thixotropy, and are attractive practical and potential nanomaterials in medicine. These properties enable the usage of nanoclays as drug carriers for the delivery of antibiotics, antihypertensive drugs, anti-psychotic, and anticancer drugs. The review examines the latest advances in nanoclay-based drug delivery systems and related applications in gene therapy and tissue engineering. Clay minerals, particularly montmorillonite, kaolinite, and halloysite are used to delay and/or target drug release or even improve drug dissolution due to their surface charge. Chemical modification of clay minerals such as intercalation of ions into the interlayer space of clay minerals or surface modification of clay minerals is a strategy to tune the properties of nanoclays for the loading and release of a drug. The modified nanoclay can take up drugs by encapsulation, immobilization, ion exchange reaction, or electrostatic interactions. Controlled drug release from the drug-clay originates from the incorporation and interactions between the drug and inorganic layers, including electrostatic interactions and hydrogen bonding. Montmorillonite has proven non-toxic through hematological, biochemical, and histopathological analyses in rat. Montmorillonite can also act as a potent detoxifier. Halloysite nanotubes can bind synthetic and biological components such as chitosan, gelatin, and alginate innate nanocarriers for the improved loading and controlled release of drugs, proteins, and DNA. The peculiar properties of clay nanoparticles lead to promising applications in drug delivery, gene delivery, tissue engineering, cancer and stem cell isolation, and bioimaging.

摘要

需要安全、治疗有效且患者依从性好的药物递送系统,以设计新的工具和策略来对抗癌症、SARS、H7N9 禽流感和登革热感染等最致命的疾病。药物递送的主要挑战包括细胞毒性、生物分布差、功能不足、药物在递送装置中掺入不足以及随后的药物释放。粘土矿物是一类纳米层状硅酸盐,具有良好的生物相容性、高比表面积、化学惰性、胶体和触变性,是医学中具有吸引力的实用和潜在纳米材料。这些特性使纳米粘土能够用作抗生素、抗高血压药物、抗精神病药物和抗癌药物的药物载体。本文综述了基于纳米粘土的药物递送系统的最新进展及其在基因治疗和组织工程中的相关应用。粘土矿物,特别是蒙脱石、高岭石和埃洛石,由于其表面电荷,用于延迟和/或靶向药物释放,甚至提高药物溶解度。粘土矿物的化学改性,如将离子插入粘土矿物的层间空间或表面改性粘土矿物,是一种调节纳米粘土负载和释放药物性能的策略。改性纳米粘土可以通过包封、固定化、离子交换反应或静电相互作用来吸收药物。药物-粘土的药物控释源于药物与无机层之间的相互作用和相互作用,包括静电相互作用和氢键。通过大鼠的血液学、生化和组织病理学分析证明蒙脱石无毒。蒙脱石还可以作为一种有效的解毒剂。埃洛石纳米管可以结合壳聚糖、明胶和海藻酸钠等合成和生物成分,作为天然纳米载体,用于提高药物、蛋白质和 DNA 的负载和控制释放。粘土纳米颗粒的独特性质使其在药物递送、基因递送、组织工程、癌症和干细胞分离以及生物成像等方面具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验