Suppr超能文献

基于 MRI 图像的迁移学习对脑胶质瘤分级。

Grading of gliomas using transfer learning on MRI images.

机构信息

Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

MAGMA. 2023 Feb;36(1):43-53. doi: 10.1007/s10334-022-01046-y. Epub 2022 Nov 3.

Abstract

OBJECTIVE

Despite the critical role of Magnetic Resonance Imaging (MRI) in the diagnosis of brain tumours, there are still many pitfalls in the exact grading of them, in particular, gliomas. In this regard, it was aimed to examine the potential of Transfer Learning (TL) and Machine Learning (ML) algorithms in the accurate grading of gliomas on MRI images.

MATERIALS AND METHODS

Dataset has included four types of axial MRI images of glioma brain tumours with grades I-IV: T1-weighted, T2-weighted, FLAIR, and T1-weighted Contrast-Enhanced (T1-CE). Images were resized, normalized, and randomly split into training, validation, and test sets. ImageNet pre-trained Convolutional Neural Networks (CNNs) were utilized for feature extraction and classification, using Adam and SGD optimizers. Logistic Regression (LR) and Support Vector Machine (SVM) methods were also implemented for classification instead of Fully Connected (FC) layers taking advantage of features extracted by each CNN.

RESULTS

Evaluation metrics were computed to find the model with the best performance, and the highest overall accuracy of 99.38% was achieved for the model containing an SVM classifier and features extracted by pre-trained VGG-16.

DISCUSSION

It was demonstrated that developing Computer-aided Diagnosis (CAD) systems using pre-trained CNNs and classification algorithms is a functional approach to automatically specify the grade of glioma brain tumours in MRI images. Using these models is an excellent alternative to invasive methods and helps doctors diagnose more accurately before treatment.

摘要

目的

尽管磁共振成像(MRI)在脑肿瘤的诊断中起着关键作用,但在对其进行准确分级方面仍存在许多问题,尤其是在胶质瘤方面。在这方面,旨在研究迁移学习(TL)和机器学习(ML)算法在 MRI 图像上准确分级胶质瘤的潜力。

材料和方法

数据集包括四种类型的胶质瘤脑肿瘤的轴向 MRI 图像:T1 加权、T2 加权、FLAIR 和 T1 加权对比增强(T1-CE)。对图像进行了调整大小、归一化处理,并随机分为训练集、验证集和测试集。使用 Adam 和 SGD 优化器对预训练的卷积神经网络(CNN)进行特征提取和分类。也实现了逻辑回归(LR)和支持向量机(SVM)方法,而不是使用每个 CNN 提取的特征使用全连接(FC)层进行分类。

结果

计算了评估指标,以找到性能最佳的模型,使用包含 SVM 分类器和预训练 VGG-16 提取特征的模型,获得了 99.38%的整体最高准确性。

讨论

结果表明,使用预训练的 CNN 和分类算法开发计算机辅助诊断(CAD)系统是自动指定 MRI 图像中胶质瘤肿瘤等级的一种功能方法。使用这些模型是对有创方法的极好替代,有助于医生在治疗前更准确地诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验