Suppr超能文献

基于深度卷积神经网络的脑胶质瘤分级改进。

Improved Glioma Grading Using Deep Convolutional Neural Networks.

机构信息

From the Ming Hsieh Department of Electrical and Computer Engineering (S.G., K.S.N.), Viterbi School of Engineering

Department of Radiology (J.A., M.S.S., D.H., K.S.N.), Keck School of Medicine, University of Southern California, Los Angeles, California.

出版信息

AJNR Am J Neuroradiol. 2021 Jan;42(2):233-239. doi: 10.3174/ajnr.A6882. Epub 2020 Dec 10.

Abstract

BACKGROUND AND PURPOSE

Accurate determination of glioma grade leads to improved treatment planning. The criterion standard for glioma grading is invasive tissue sampling. Recently, radiomic features have shown excellent potential in glioma-grade prediction. These features may not fully exploit the underlying information in MR images. The objective of this study was to investigate the performance of features learned by a convolutional neural network compared with standard radiomic features for grade prediction.

MATERIALS AND METHODS

A total of 237 patients with gliomas were included in this study. All images were resampled, registered, skull-stripped, and segmented to extract the tumors. The learned features from the trained convolutional neural network were used for grade prediction. The performance of the proposed method was compared with standard machine learning approaches, support vector machine, random forests, and gradient boosting trained with radiomic features.

RESULTS

The experimental results demonstrate that using learned features extracted from the convolutional neural network achieves an average accuracy of 87%, outperforming the methods considering radiomic features alone. The top-performing machine learning model is gradient boosting with an average accuracy of 64%. Thus, there is a 23% improvement in accuracy, and it is an efficient technique for grade prediction.

CONCLUSIONS

Convolutional neural networks are able to learn discriminating features automatically, and these features provide added value for grading gliomas. The proposed framework may provide substantial improvement in glioma-grade prediction; however, further validation is needed.

摘要

背景与目的

准确确定胶质瘤的分级有助于改善治疗计划。胶质瘤分级的标准是有创性组织取样。最近,放射组学特征在胶质瘤分级预测中显示出了极好的潜力。这些特征可能没有充分利用磁共振图像中的潜在信息。本研究旨在探讨卷积神经网络学习到的特征在分级预测方面的表现与标准放射组学特征的表现。

材料与方法

本研究共纳入 237 例脑胶质瘤患者。所有图像均进行重采样、配准、颅骨剥离和分割以提取肿瘤。使用训练好的卷积神经网络学习到的特征进行分级预测。将所提出的方法的性能与标准机器学习方法(支持向量机、随机森林和梯度提升,使用放射组学特征训练)进行了比较。

结果

实验结果表明,使用从卷积神经网络中提取的学习特征进行预测的平均准确率为 87%,优于仅考虑放射组学特征的方法。表现最好的机器学习模型是梯度提升,平均准确率为 64%。因此,准确性提高了 23%,这是一种用于分级预测的有效技术。

结论

卷积神经网络能够自动学习有鉴别力的特征,这些特征为胶质瘤分级提供了附加价值。所提出的框架可能会显著提高胶质瘤分级预测的准确性;但是,还需要进一步验证。

相似文献

1
Improved Glioma Grading Using Deep Convolutional Neural Networks.基于深度卷积神经网络的脑胶质瘤分级改进。
AJNR Am J Neuroradiol. 2021 Jan;42(2):233-239. doi: 10.3174/ajnr.A6882. Epub 2020 Dec 10.

引用本文的文献

本文引用的文献

6
Primary brain tumours in adults.成人原发性脑肿瘤。
Lancet. 2018 Aug 4;392(10145):432-446. doi: 10.1016/S0140-6736(18)30990-5. Epub 2018 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验