ICube, University of Strasbourg, France.
IRIMAS, University of Haute-Alsace, France.
Artif Intell Med. 2022 Nov;133:102407. doi: 10.1016/j.artmed.2022.102407. Epub 2022 Sep 24.
Recently, Artificial Intelligence namely Deep Learning methods have revolutionized a wide range of domains and applications. Besides, Digital Pathology has so far played a major role in the diagnosis and the prognosis of tumors. However, the characteristics of the Whole Slide Images namely the gigapixel size, high resolution and the shortage of richly labeled samples have hindered the efficiency of classical Machine Learning methods. That goes without saying that traditional methods are poor in generalization to different tasks and data contents. Regarding the success of Deep learning when dealing with Large Scale applications, we have resorted to the use of such models for histopathological image segmentation tasks. First, we review and compare the classical UNet and Att-UNet models for colon cancer WSI segmentation in a sparsely annotated data scenario. Then, we introduce novel enhanced models of the Att-UNet where different schemes are proposed for the skip connections and spatial attention gates positions in the network. In fact, spatial attention gates assist the training process and enable the model to avoid irrelevant feature learning. Alternating the presence of such modules namely in our Alter-AttUNet model adds robustness and ensures better image segmentation results. In order to cope with the lack of richly annotated data in our AiCOLO colon cancer dataset, we suggest the use of a multi-step training strategy that also deals with the WSI sparse annotations and unbalanced class issues. All proposed methods outperform state-of-the-art approaches but Alter-AttUNet generates the best compromise between accurate results and light network. The model achieves 95.88% accuracy with our sparse AiCOLO colon cancer datasets. Finally, to evaluate and validate our proposed architectures we resort to publicly available WSI data: the NCT-CRC-HE-100K, the CRC-5000 and the Warwick colon cancer histopathological dataset. Respective accuracies of 99.65%, 99.73% and 79.03% were reached. A comparison with state-of-art approaches is established to view and compare the key solutions for histopathological image segmentation.
最近,人工智能即深度学习方法已经彻底改变了广泛的领域和应用。此外,数字病理学迄今为止在肿瘤的诊断和预后中发挥了主要作用。然而,全幻灯片图像的特点,即千兆像素大小、高分辨率和丰富标记样本的缺乏,阻碍了经典机器学习方法的效率。不言而喻,传统方法在不同任务和数据内容的泛化能力方面较差。鉴于深度学习在处理大规模应用程序时的成功,我们已经开始将这些模型用于组织病理学图像分割任务。首先,我们在稀疏注释数据场景中回顾和比较了经典 UNet 和 Att-UNet 模型用于结肠癌 WSI 分割的情况。然后,我们介绍了 Att-UNet 的新颖增强模型,其中在网络中提出了不同的方案来设计跳过连接和空间注意门的位置。实际上,空间注意门有助于训练过程,并使模型能够避免无关的特征学习。在我们的 Alter-AttUNet 模型中交替存在这些模块,增加了鲁棒性并确保了更好的图像分割结果。为了应对我们的 AiCOLO 结肠癌数据集缺乏丰富注释数据的问题,我们建议使用多步训练策略,该策略还处理 WSI 稀疏注释和不平衡类问题。所有提出的方法都优于最先进的方法,但 Alter-AttUNet 在准确结果和轻量级网络之间取得了最佳折衷。该模型在我们稀疏的 AiCOLO 结肠癌数据集上实现了 95.88%的准确率。最后,为了评估和验证我们提出的架构,我们诉诸于公开可用的 WSI 数据:NCT-CRC-HE-100K、CRC-5000 和 Warwick 结肠癌组织病理学数据集。分别达到了 99.65%、99.73%和 79.03%的准确率。建立了与最先进方法的比较,以查看和比较组织病理学图像分割的关键解决方案。
Comput Biol Med. 2021-9
IEEE Trans Cybern. 2020-9
Comput Methods Programs Biomed. 2024-8
Comput Methods Programs Biomed. 2024-1
Med Image Anal. 2023-10
Comput Methods Programs Biomed. 2020-12
Prz Gastroenterol. 2023