Suppr超能文献

模拟毒代动力学变异性以识别易感和高暴露人群。

Simulating toxicokinetic variability to identify susceptible and highly exposed populations.

机构信息

Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, USA.

Oak Ridge Institute for Science and Education (ORISE) fellow at the Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.

出版信息

J Expo Sci Environ Epidemiol. 2022 Nov;32(6):855-863. doi: 10.1038/s41370-022-00491-0. Epub 2022 Nov 3.

Abstract

BACKGROUND

Toxicokinetic (TK) data needed for chemical risk assessment are not available for most chemicals. To support a greater number of chemicals, the U.S. Environmental Protection Agency (EPA) created the open-source R package "httk" (High Throughput ToxicoKinetics). The "httk" package provides functions and data tables for simulation and statistical analysis of chemical TK, including a population variability simulator that uses biometrics data from the National Health and Nutrition Examination Survey (NHANES).

OBJECTIVE

Here we modernize the "HTTK-Pop" population variability simulator based on the currently available data and literature. We provide explanations of the algorithms used by "httk" for variability simulation and uncertainty propagation.

METHODS

We updated and revised the population variability simulator in the "httk" package with the most recent NHANES biometrics (up to the 2017-18 NHANES cohort). Model equations describing glomerular filtration rate (GFR) were revised to more accurately represent physiology and population variability. The model output from the updated "httk" package was compared with the current version.

RESULTS

The revised population variability simulator in the "httk" package now provides refined, more relevant, and better justified estimations.

SIGNIFICANCE

Fulfilling the U.S. EPA's mission to provide open-source data and models for evaluations and applications by the broader scientific community, and continuously improving the accuracy of the "httk" package based on the currently available data and literature.

摘要

背景

大多数化学物质的毒代动力学 (TK) 数据都无法用于化学风险评估。为了支持更多的化学物质,美国环境保护署 (EPA) 创建了开源 R 包“httk”(高通量毒代动力学)。“httk”包提供了用于化学 TK 模拟和统计分析的功能和数据表,包括一个使用来自国家健康和营养检查调查 (NHANES) 的生物统计学数据的群体变异性模拟器。

目的

在此,我们基于现有数据和文献,对“HTTK-Pop”群体变异性模拟器进行了现代化改造。我们解释了“httk”用于变异性模拟和不确定性传播的算法。

方法

我们使用最新的 NHANES 生物统计学(截至 2017-18 年 NHANES 队列)更新和修订了“httk”包中的群体变异性模拟器。修订了描述肾小球滤过率 (GFR) 的模型方程,以更准确地反映生理学和群体变异性。比较了更新后的“httk”包的模型输出与当前版本。

结果

“httk”包中的修订后的群体变异性模拟器现在提供了更精细、更相关和更合理的估计。

意义

满足美国环保署的使命,为更广泛的科学界提供开放源码数据和模型,用于评估和应用,并根据现有数据和文献不断提高“httk”包的准确性。

相似文献

1
Simulating toxicokinetic variability to identify susceptible and highly exposed populations.
J Expo Sci Environ Epidemiol. 2022 Nov;32(6):855-863. doi: 10.1038/s41370-022-00491-0. Epub 2022 Nov 3.
2
Enabling transparent toxicokinetic modeling for public health risk assessment.
PLoS One. 2025 Apr 16;20(4):e0321321. doi: 10.1371/journal.pone.0321321. eCollection 2025.
3
High-throughput PBTK models for to extrapolation.
Expert Opin Drug Metab Toxicol. 2021 Aug;17(8):903-921. doi: 10.1080/17425255.2021.1935867. Epub 2021 Jun 15.
4
Toxicokinetic Triage for Environmental Chemicals.
Toxicol Sci. 2015 Sep;147(1):55-67. doi: 10.1093/toxsci/kfv118. Epub 2015 Jun 16.
5
Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability.
Environ Int. 2017 Sep;106:105-118. doi: 10.1016/j.envint.2017.06.004. Epub 2017 Jun 16.
6
httk: R Package for High-Throughput Toxicokinetics.
J Stat Softw. 2017 Jul 17;79(4):1-26. doi: 10.18637/jss.v079.i04.
7
Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization.
Toxicol Sci. 2019 Dec 1;172(2):235-251. doi: 10.1093/toxsci/kfz205.
8
Evaluation of a rapid, generic human gestational dose model.
Reprod Toxicol. 2022 Oct;113:172-188. doi: 10.1016/j.reprotox.2022.09.004. Epub 2022 Sep 16.
9
Evaluation and calibration of high-throughput predictions of chemical distribution to tissues.
J Pharmacokinet Pharmacodyn. 2017 Dec;44(6):549-565. doi: 10.1007/s10928-017-9548-7. Epub 2017 Oct 14.
10
Development and evaluation of a high throughput inhalation model for organic chemicals.
J Expo Sci Environ Epidemiol. 2020 Sep;30(5):866-877. doi: 10.1038/s41370-020-0238-y. Epub 2020 Jun 16.

引用本文的文献

1
Enabling transparent toxicokinetic modeling for public health risk assessment.
PLoS One. 2025 Apr 16;20(4):e0321321. doi: 10.1371/journal.pone.0321321. eCollection 2025.
3
Computational Tools to Facilitate Early Warning of New Emerging Risk Chemicals.
Toxics. 2024 Oct 12;12(10):736. doi: 10.3390/toxics12100736.
5
Invited Perspective: Uneven Progress Addressing Population Variability in Human Health Risk Assessment.
Environ Health Perspect. 2024 Mar;132(3):31305. doi: 10.1289/EHP13461. Epub 2024 Mar 18.
6
Cutting-edge computational chemical exposure research at the U.S. Environmental Protection Agency.
Environ Int. 2023 Aug;178:108097. doi: 10.1016/j.envint.2023.108097. Epub 2023 Jul 13.
7
Exposure forecasting - ExpoCast - for data-poor chemicals in commerce and the environment.
J Expo Sci Environ Epidemiol. 2022 Nov;32(6):783-793. doi: 10.1038/s41370-022-00492-z. Epub 2022 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验