Suppr超能文献

马尔可夫链蒙特卡罗方法在化学交换饱和转移磁共振成像稳健定量分析中的应用

Application of a Markov chain Monte Carlo method for robust quantification in chemical exchange saturation transfer magnetic resonance imaging.

作者信息

Zhao Yingcheng, Wang Xiaoli, Wang Yifei, Wang Beilei, Zhang Lihong, Wei Xiao, He Xiaowei

机构信息

Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, China.

Department of Medical Imaging, Weifang Medical University, Weifang, China.

出版信息

Quant Imaging Med Surg. 2022 Nov;12(11):5140-5155. doi: 10.21037/qims-22-313.

Abstract

BACKGROUND

Chemical exchange saturation transfer (CEST) magnetic resonance imaging can provide surrogate biomarkers for disease diagnosis. However, endogenous CEST effects are always diluted and contaminated by competing effects, which results in unwanted signal contributions that lessen the specificity of CEST to underlying biochemical exchange processes. The aim of this study was to examine a method for the accurate quantification of CEST effects.

METHODS

A Markov chain Monte Carlo (MCMC)-based Bayesian inference approach was proposed to estimate the exchange parameters, and CEST effects could be fitted using these estimations. This approach was tested in Bloch simulation and ischemic stroke rat experiments, and its performance was evaluated using quantification maps and numerical metrics.

RESULTS

With 12 groups of simulations, the MCMC method achieved satisfactory fittings on both 2-pool and 5-pool models. The sum of squares error values and the root mean square error of the fitted Z-spectra were smaller than 10, and the coefficient of determination (R-squared) values were close to 1. The corresponding CEST quantification spectra were also well fitted and successfully separated the mixed CEST effects. The estimated parameters showed little bias relative to the ground truth, with errors between the true and estimated values of each parameter of less than 0.5%. In the animal experiments, fitted using the MCMC method showed obvious contrast between ischemic and contralateral regions at the early stage. Compared with other quantification methods, it displayed the highest contrast-to-noise ratios (3.9, 2.73, and 3.93) and the lowest coefficient of variation values (0.181, 0.2224, and 0.2897) in all three stroke periods.

CONCLUSIONS

The MCMC method provided an efficient approach for parameter estimation and CEST effect quantification. The method may therefore be useful in achieving an accurate pathological diagnosis.

摘要

背景

化学交换饱和转移(CEST)磁共振成像可为疾病诊断提供替代生物标志物。然而,内源性CEST效应总是被竞争效应稀释和污染,这会导致不必要的信号贡献,从而降低CEST对潜在生化交换过程的特异性。本研究的目的是探讨一种准确量化CEST效应的方法。

方法

提出了一种基于马尔可夫链蒙特卡罗(MCMC)的贝叶斯推理方法来估计交换参数,并使用这些估计值拟合CEST效应。该方法在布洛赫模拟和缺血性中风大鼠实验中进行了测试,并使用量化图和数值指标评估了其性能。

结果

通过12组模拟,MCMC方法在双池和五池模型上均取得了令人满意的拟合效果。拟合Z谱的平方和误差值及均方根误差小于10,决定系数(R平方)值接近1。相应的CEST定量谱也拟合良好,并成功分离了混合CEST效应。估计参数与真实值偏差很小,每个参数的真实值与估计值之间的误差小于0.5%。在动物实验中,使用MCMC方法拟合的结果在早期缺血区和对侧区域之间显示出明显的对比。与其他量化方法相比,在所有三个中风时期,它都显示出最高的对比噪声比(分别为3.9、2.73和3.93)和最低的变异系数值(分别为0.181、0.2224和0.2897)。

结论

MCMC方法为参数估计和CEST效应量化提供了一种有效的方法。因此,该方法可能有助于实现准确的病理诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee7/9622448/c528ba40e0f6/qims-12-11-5140-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验