High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
Magn Reson Med. 2019 Jun;81(6):3901-3914. doi: 10.1002/mrm.27690. Epub 2019 Feb 25.
To determine the feasibility of employing the prior knowledge of well-separated chemical exchange saturation transfer (CEST) signals in the 9.4 T Z-spectrum to separate overlapping CEST signals acquired at 3 T, using a deep learning approach trained with 3 T and 9.4 T CEST spectral data from brains of the same subjects.
Highly spectrally resolved Z-spectra from the same volunteer were acquired by 3D-snapshot CEST MRI at 3 T and 9.4 T at low saturation power of B = 0.6 µT. The volume-registered 3 T Z-spectra-stack was then used as input data for a three layer deep neural network with the volume-registered 9.4 T fitted parameter stack as target data.
An optimized neural net architecture could be found and verified in healthy volunteers. The gray-/white-matter contrast of the different CEST effects was predicted with only small deviations (Pearson R = 0.89). The 9.4 T prediction was less noisy compared to the directly measured CEST maps, although at the cost of slightly lower tissue contrast. Application to an unseen tumor patient measured at 3 T and 9.4 T revealed that tumorous tissue Z-spectra and corresponding hyper-/hypointensities of different CEST effects can also be predicted (Pearson R = 0.84).
The 9.4 T CEST signals acquired at low saturation power can be accurately estimated from CEST imaging at 3 T using a neural network trained with coregistered 3 T and 9.4 T data of healthy subjects. The deepCEST approach generalizes to Z-spectra of tumor areas and might indicate whether additional ultrahigh-field (UHF) scans will be beneficial.
利用在 9.4 T Z 谱中分离良好的化学交换饱和转移(CEST)信号的先验知识,通过使用在相同受试者的 3 T 和 9.4 T CEST 光谱数据进行训练的深度学习方法,从 3 T 采集的重叠 CEST 信号中分离出来。
在 3 T 和 9.4 T 下,使用低饱和功率 B = 0.6 µT 的 3D 快照 CEST MRI 从同一位志愿者获得高度光谱分辨率的 Z 谱。然后,将体积配准的 3 T Z 谱堆栈用作输入数据,将体积配准的 9.4 T 拟合参数堆栈作为目标数据,输入到一个具有三个隐藏层的深度神经网络中。
可以在健康志愿者中找到并验证优化的神经网络结构。不同 CEST 效应的灰/白质对比度的预测只有很小的偏差(Pearson R = 0.89)。与直接测量的 CEST 图谱相比,9.4 T 的预测噪声更小,尽管组织对比度略低。将其应用于在 3 T 和 9.4 T 测量的未见过的肿瘤患者,结果表明,肿瘤组织 Z 谱以及不同 CEST 效应的相应高/低信号强度也可以进行预测(Pearson R = 0.84)。
使用在相同受试者的 3 T 和 9.4 T 数据进行配准的神经网络,从 3 T 的 CEST 成像中可以准确估计在低饱和功率下采集的 9.4 T CEST 信号。DeepCEST 方法可推广到肿瘤区域的 Z 谱,并且可能表明是否需要额外的超高场(UHF)扫描会有益。