Sentis Arnaud, Hemptinne Jean-Louis, Magro Alexandra, Outreman Yannick
INRAE Aix Marseille University, UMR RECOVER Aix-en-Provence France.
Laboratoire Évolution et Diversité biologique UMR 5174 CNRS/UPS/IRD Toulouse France.
Evol Appl. 2022 Nov 1;15(10):1537-1554. doi: 10.1111/eva.13457. eCollection 2022 Oct.
While ecological interactions have been identified as determinant for biological control efficiency, the role of evolution remains largely underestimated in biological control programs. With the restrictions on the use of both pesticides and exotic biological control agents (BCAs), the evolutionary optimization of local BCAs becomes central for improving the efficiency and the resilience of biological control. In particular, we need to better account for the natural processes of evolution to fully understand the interactions of pests and BCAs, including in biocontrol strategies integrating human manipulations of evolution (i.e., artificial selection and genetic engineering). In agroecosystems, the evolution of BCAs traits and performance depends on heritable phenotypic variation, trait genetic architecture, selection strength, stochastic processes, and other selective forces. Humans can manipulate these natural processes to increase the likelihood of evolutionary trait improvement, by artificially increasing heritable phenotypic variation, strengthening selection, controlling stochastic processes, or overpassing evolution through genetic engineering. We highlight these facets by reviewing recent studies addressing the importance of natural processes of evolution and human manipulations of these processes in biological control. We then discuss the interactions between the natural processes of evolution occurring in agroecosystems and affecting the artificially improved BCAs after their release. We emphasize that biological control cannot be summarized by interactions between species pairs because pests and biological control agents are entangled in diverse communities and are exposed to a multitude of deterministic and stochastic selective forces that can change rapidly in direction and intensity. We conclude that the combination of different evolutionary approaches can help optimize BCAs to remain efficient under changing environmental conditions and, ultimately, favor agroecosystem sustainability.
虽然生态相互作用已被确定为生物防治效率的决定因素,但在生物防治计划中,进化的作用仍在很大程度上被低估。随着农药和外来生物防治剂使用的限制,本地生物防治剂的进化优化对于提高生物防治的效率和恢复力变得至关重要。特别是,我们需要更好地考虑进化的自然过程,以充分理解害虫与生物防治剂之间的相互作用,包括在整合人类对进化的操控(即人工选择和基因工程)的生物防治策略中。在农业生态系统中,生物防治剂的性状和性能进化取决于可遗传的表型变异、性状遗传结构、选择强度、随机过程以及其他选择力量。人类可以通过人为增加可遗传的表型变异、加强选择、控制随机过程或通过基因工程超越进化等方式来操控这些自然过程,以增加进化性状改善的可能性。我们通过回顾近期关于进化自然过程的重要性以及人类对这些过程在生物防治中的操控的研究来突出这些方面。然后,我们讨论了农业生态系统中发生的进化自然过程与生物防治剂释放后对其人工改良后的影响之间的相互作用。我们强调生物防治不能简单归结为物种对之间的相互作用,因为害虫和生物防治剂在多样的群落中相互交织,并受到众多确定性和随机选择力量的影响,这些力量在方向和强度上可能迅速变化。我们得出结论,不同进化方法的结合有助于优化生物防治剂,使其在不断变化的环境条件下保持高效,并最终有利于农业生态系统的可持续性。