Suppr超能文献

基于人工智能尺度不变特征变换算法的系统提高浸润性乳腺癌中Ki-67指数的计算准确性:一项多中心回顾性研究

Artificial intelligence scale-invariant feature transform algorithm-based system to improve the calculation accuracy of Ki-67 index in invasive breast cancer: a multicenter retrospective study.

作者信息

Xie Ning, Zhou Haoyu, Yu Li, Huang Shaobing, Tian Can, Li Keyu, Jiang Yi, Hu Zhe-Yu, Ouyang Quchang

机构信息

Medical Department of Breast Cancer, Hunan Cancer Hospital, Changsha, China.

Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China.

出版信息

Ann Transl Med. 2022 Oct;10(19):1067. doi: 10.21037/atm-22-4254.

Abstract

BACKGROUND

Ki-67 is a key indicator of the proliferation activity of tumors. However, no standardized criterion has been established for Ki-67 index calculation. Scale-invariant feature transform (SIFT) algorithm can identify the robust invariant features to rotation, translation, scaling and linear intensity changes for matching and registration in computer vision. Thus, this study aimed to develop a SIFT-based computer-aided system for Ki-67 calculation in breast cancer.

METHODS

Hematoxylin and eosin (HE)-stained and Ki-67-stained slides were scanned and whole slide images (WSIs) were obtained. The regions of breast cancer (BC) tissues and non-BC tissues were labeled by experienced pathologists. All the labeled WSIs were randomly divided into the training set, verification set, and test set according to a fixed ratio of 7:2:1. The algorithm for identification of cancerous regions was developed by a ResNet network. The registration process between paired consecutive HE-stained WSIs and Ki-67-stained WSIs was based on a pyramid model using the feature matching method of SIFT. After registration, we counted the nuclear-stained Ki-67-positive cells in each identified invasive cancerous region using color deconvolution. To assess the accuracy, the AI-assisted result for each slice was compared with the manual diagnosis result of pathologists. If the difference of the two positive rate values is not greater than 10%, it was a consistent result; otherwise, it was an inconsistent result.

RESULTS

The accuracy of the AI-based algorithm in identifying breast cancer tissues in HE-stained slides was 93%, with an area under the curve (AUC) of 0.98. After registration, we succeeded in identifying Ki-67-positive cells among cancerous cells across the entire WSIs and calculated the Ki-67 index, with an accuracy rate of 91.5%, compared to the gold standard pathological reports. Using this system, it took about 1 hour to complete the evaluation of all the tested 771 pairs of HE- and Ki-67-stained slides. Each Ki-67 result took less than 2 seconds.

CONCLUSIONS

Using a pyramid model and the SIFT feature matching method, we developed an AI-based automatic cancer identification and Ki-67 index calculation system, which could improve the accuracy of Ki-67 index calculation and make the data repeatable among different hospitals and centers.

摘要

背景

Ki-67是肿瘤增殖活性的关键指标。然而,尚未建立Ki-67指数计算的标准化标准。尺度不变特征变换(SIFT)算法可以识别对旋转、平移、缩放和线性强度变化具有鲁棒性的不变特征,用于计算机视觉中的匹配和配准。因此,本研究旨在开发一种基于SIFT的计算机辅助系统,用于计算乳腺癌中的Ki-67。

方法

对苏木精和伊红(HE)染色及Ki-67染色的玻片进行扫描,获得全玻片图像(WSIs)。由经验丰富的病理学家标记乳腺癌(BC)组织和非BC组织区域。所有标记的WSIs按照7:2:1的固定比例随机分为训练集、验证集和测试集。通过ResNet网络开发癌细胞区域识别算法。配对的连续HE染色WSIs和Ki-67染色WSIs之间的配准过程基于金字塔模型,采用SIFT特征匹配方法。配准后,我们使用颜色反卷积在每个识别出的浸润性癌区域中计数核染色的Ki-67阳性细胞。为评估准确性,将每张切片的人工智能辅助结果与病理学家手动诊断结果进行比较。如果两个阳性率值的差异不大于10%,则为一致结果;否则,为不一致结果。

结果

基于人工智能的算法在HE染色玻片中识别乳腺癌组织的准确率为93%,曲线下面积(AUC)为0.98。配准后,我们成功在整个WSIs的癌细胞中识别出Ki-67阳性细胞并计算Ki-67指数,与金标准病理报告相比,准确率为91.5%。使用该系统,完成对所有测试的771对HE和Ki-67染色玻片的评估大约需要1小时。每个Ki-67结果耗时不到2秒。

结论

使用金字塔模型和SIFT特征匹配方法,我们开发了一种基于人工智能的自动癌症识别和Ki-67指数计算系统,该系统可以提高Ki-67指数计算的准确性,并使不同医院和中心的数据具有可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d0f/9622502/68543aec6188/atm-10-19-1067-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验