Suppr超能文献

基于机器学习的污染物去除吸附过程建模、优化和理解:最新进展和未来展望。

Modeling, optimization and understanding of adsorption process for pollutant removal via machine learning: Recent progress and future perspectives.

机构信息

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.

South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China.

出版信息

Chemosphere. 2023 Jan;311(Pt 1):137044. doi: 10.1016/j.chemosphere.2022.137044. Epub 2022 Oct 29.

Abstract

It is crucial to reduce the concentration of pollutants in water environment to below safe levels. Some cost-effective pollutant removal technologies have been developed, among which adsorption technology is considered as a promising solution. However, the batch experiments and adsorption isotherms widely employed at present are inefficient and time-consuming to some extent, which limits the development of adsorption technology. As a new research paradigm, machine learning (ML) is expected to innovate traditional adsorption models. This reviews summarized the general workflow of ML and commonly employed ML algorithms for pollutant adsorption. Then, the latest progress of ML for pollutant adsorption was reviewed from the perspective of all-round regulation of adsorption process, including adsorption efficiency, operating conditions and adsorption mechanism. General guidelines of ML for pollutant adsorption were presented. Finally, the existing problems and future perspectives of ML for pollutant adsorption were put forward. We highly expect that this review will promote the application of ML in pollutant adsorption and improve the interpretability of ML.

摘要

将水环境中的污染物浓度降低到安全水平至关重要。已经开发了一些具有成本效益的污染物去除技术,其中吸附技术被认为是一种很有前途的解决方案。然而,目前广泛使用的批量实验和吸附等温线在某种程度上效率低下且耗时,这限制了吸附技术的发展。作为一种新的研究范例,机器学习(ML)有望创新传统的吸附模型。本综述总结了 ML 的一般工作流程和常用的 ML 算法用于污染物吸附。然后,从吸附过程的全面调控的角度综述了 ML 在污染物吸附方面的最新进展,包括吸附效率、操作条件和吸附机制。提出了用于污染物吸附的 ML 的一般准则。最后,提出了用于污染物吸附的 ML 存在的问题和未来展望。我们非常期望本综述将促进 ML 在污染物吸附中的应用,并提高 ML 的可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验