Suppr超能文献

软计算技术在环保吸附剂去除污染物预测中的应用(案例研究:改性水炭对硝酸盐的吸附)。

Applications of soft computing techniques for prediction of pollutant removal by environmentally friendly adsorbents (case study: the nitrate adsorption on modified hydrochar).

机构信息

Environmental Engineering Department, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran E-mail:

Irrigation and Drainage Department, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

出版信息

Water Sci Technol. 2022 Sep;86(5):1066-1082. doi: 10.2166/wst.2022.264.

Abstract

Artificial intelligence has emerged as a powerful tool for solving real-world problems in various fields. This study investigates the simulation and prediction of nitrate adsorption from an aqueous solution using modified hydrochar prepared from sugarcane bagasse using an artificial neural network (ANN), support vector machine (SVR), and gene expression programming (GEP). Different parameters, such as the solution pH, adsorbent dosage, contact time, and initial nitrate concentration, were introduced to the models as input variables, and adsorption capacity was the predicted variable. The comparison of artificial intelligence models demonstrated that an ANN with a lower root mean square error (0.001) and higher R (0.99) value can predict nitrate adsorption onto modified hydrochar of sugarcane bagasse better than other models. In addition, the contact time and initial nitrate concentration revealed a higher correlation between input variables with the adsorption capacity.

摘要

人工智能已成为解决各领域实际问题的强大工具。本研究采用人工神经网络(ANN)、支持向量机(SVR)和基因表达式编程(GEP),利用甘蔗渣制备改性水炭,对硝酸盐从水溶液中的吸附进行模拟和预测。将溶液 pH 值、吸附剂用量、接触时间和初始硝酸盐浓度等不同参数作为输入变量引入模型,预测吸附容量。人工智能模型的比较表明,均方根误差(0.001)较低且 R 值(0.99)较高的 ANN 模型可以更好地预测硝酸盐在甘蔗渣改性水炭上的吸附。此外,接触时间和初始硝酸盐浓度与吸附容量之间的相关性更高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验